ON IMPROVEMENT OF STATISTICAL ESTIMATORS IN A POWER REGRESSION PROBLEM

被引:0
|
作者
Savinkina, E. N. [1 ,2 ]
Sakhanenko, A., I [1 ,2 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
关键词
non-linear regression; power regression; statistical estimators; asymptotically normal estimators; two-stage estimation; improved estimators; ASYMPTOTICALLY NORMAL ESTIMATORS; UNKNOWN PARAMETER;
D O I
10.33048/semi.2019.16.135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a task of estimating an unknown parameter in a special class of nonlinear regression problems. The second step of a two-stage estimation method is presented (with the first step consistent estimators being already obtained). The asymptotic normality of these estimators is proved.
引用
收藏
页码:1901 / 1912
页数:12
相关论文
共 50 条
  • [41] Improved ridge regression estimators for the logistic regression model
    Saleh, A. K. Md. E.
    Kibria, B. M. Golam
    COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2519 - 2558
  • [43] Word Embeddings as Statistical Estimators
    Dey, Neil
    Singer, Matthew
    Williams, Jonathan P.
    Sengupta, Srijan
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (02): : 415 - 441
  • [44] STATISTICAL ERROR IN DIMENSION ESTIMATORS
    THEILER, J
    MEASURES OF COMPLEXITY AND CHAOS, 1989, 208 : 199 - 202
  • [45] Statistical properties of distance estimators
    Chen, Dechang
    Fries, Michael
    Cheng, Xiuzhen
    STATISTICAL PAPERS, 2006, 47 (04) : 631 - 641
  • [46] STATISTICAL PROPERTIES OF WEIBULL ESTIMATORS
    KHALILI, A
    KROMP, K
    JOURNAL OF MATERIALS SCIENCE, 1991, 26 (24) : 6741 - 6752
  • [47] Statistical properties of distance estimators
    Dechang Chen
    Michael Fries
    Xiuzhen Cheng
    Statistical Papers, 2006, 47 : 631 - 641
  • [48] Voting rules as statistical estimators
    Pivato, Marcus
    SOCIAL CHOICE AND WELFARE, 2013, 40 (02) : 581 - 630
  • [49] STATISTICAL PRECISION OF DIMENSION ESTIMATORS
    THEILER, J
    PHYSICAL REVIEW A, 1990, 41 (06): : 3038 - 3051
  • [50] Estimators for CMB statistical anisotropy
    Hanson, Duncan
    Lewis, Antony
    PHYSICAL REVIEW D, 2009, 80 (06):