Multiple imputation methods for the missing covariates in generalized estimating equation

被引:20
|
作者
Xie, F
Paik, MC
机构
[1] Wyeth Lederle Vaccines & Pediat, Dept Clin Stat & Data Management, Pearl River, NY 10965 USA
[2] Columbia Univ, Sch Publ Hlth, Div Biostat, New York, NY 10032 USA
关键词
generalized estimating equation; missing at random; multiple imputation;
D O I
10.2307/2533521
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper discusses the missing covariates problem in the generalized estimating equation (GEE) model. Estimates by various multiple imputation techniques (MI) are examined and compared to the sample average imputation method (SA) through simulations and an example. The simulation results show that, under the correct model specification, the MI estimators have negligible bias and have fairly similar efficiencies as the SA estimator. A practical advantage of the MI estimates is that the standard errors can be more easily computed than the SA estimates.
引用
收藏
页码:1538 / 1546
页数:9
相关论文
共 50 条
  • [41] PENALIZED ESTIMATING EQUATIONS FOR GENERALIZED LINEAR MODELS WITH MULTIPLE IMPUTATION
    Li, Yang
    Yang, Haoyu
    Yu, Haochen
    Huang, Hanwen
    Shen, Ye
    ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 2345 - 2363
  • [42] A Comparison of Random Forest-Based Missing Imputation Methods for Covariates in Propensity Score Analysis
    Lee, Yongseok
    Leite, Walter L.
    PSYCHOLOGICAL METHODS, 2024,
  • [43] Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach
    Erler, Nicole S.
    Rizopoulos, Dimitris
    van Rosmalen, Joost
    Jaddoe, Vincent W. V.
    Franco, Oscar H.
    Lesaffre, Emmanuel M. E. H.
    STATISTICS IN MEDICINE, 2016, 35 (17) : 2955 - 2974
  • [44] Imputation of Missing Covariates in Randomized Controlled Trials with Continuous Outcomes: Simple, Unbiased and Efficient Methods
    Kayembe, Mutamba T.
    Jolani, Shahab
    Tan, Frans E. S.
    van Breukelen, Gerard J. P.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2022, 32 (05) : 717 - 739
  • [45] A comparison of multiple imputation methods for missing data in longitudinal studies
    Huque, Md Hamidul
    Carlin, John B.
    Simpson, Julie A.
    Lee, Katherine J.
    BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [46] A comparison of multiple imputation methods for missing data in longitudinal studies
    Md Hamidul Huque
    John B. Carlin
    Julie A. Simpson
    Katherine J. Lee
    BMC Medical Research Methodology, 18
  • [47] Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous-discrete covariates
    Kato, Ryo
    Hoshino, Takahiro
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (03) : 803 - 825
  • [48] The comparative efficacy of imputation methods for missing data in structural equation modeling
    Olinsky, A
    Chen, S
    Harlow, L
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 151 (01) : 53 - 79
  • [49] Comparison of Different Methods for Multiple Imputation by Chain Equation
    Grigorova, Denitsa
    Tonchev, Demir
    Palejev, Dean
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 439 - 446
  • [50] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420