Improving Methods for Multi-Terrain Classification Beyond Visual Perception

被引:2
|
作者
Allred, Christopher [1 ]
Russell, Mason [2 ]
Harper, Mario [1 ]
Pusey, Jason [2 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
[2] Army Res Lab, Computat & Informat Sci Directorate, Aberdeen Proving Ground, MD USA
关键词
Legged Robots; Gaits; Terrain classification; Machine Learning; LSTM; VEHICLES;
D O I
10.1109/IRC52146.2021.00022
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Terrain classification in mixed-surface unstructured environments is key for safe navigation, energy efficiency, and anticipating motion volatility. This is particularly true for dynamically moving legged platforms which are highly impacted by foot ground interactions. This research demonstrates terrain classification using a long short-term memory (LSTM) model trained on actuator time series data, particularly the difference in center-of-pressure (COP) and leg forces. The LSTM COP-Force model showed a 97.5% accuracy in classification on three outdoor surfaces with small amounts of data and no additional sensors.
引用
收藏
页码:96 / 99
页数:4
相关论文
共 50 条
  • [21] Multi-Terrain Velocity Control of the Spherical Robot by Online Obtaining the Uncertainties in the Dynamics
    Liu, Yifan
    Wang, Yixu
    Guan, Xiaoqing
    Wang, You
    Jin, Song
    Hu, Tao
    Ren, Wei
    Hao, Jie
    Zhang, Jin
    Li, Guang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 2732 - 2739
  • [22] Optimum Pipeline for Visual Terrain Classification Using Improved Bag of Visual Words and Fusion Methods
    Wu, Hang
    Liu, Baozhen
    Su, Weihua
    Chen, Zihao
    Zhang, Wenchang
    Ren, Xudong
    Sun, Jinggong
    JOURNAL OF SENSORS, 2017, 2017
  • [23] VAST: Visual and Spectral Terrain Classification in Unstructured Multi-Class Environments
    Hanson, Nathaniel
    Shaham, Michael
    Erdogmus, Deniz
    Padir, Taskin
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3956 - 3963
  • [24] Visual GPS-denied Multi-Agent Localization & Terrain Classification
    Chiel, Benjamin S.
    Baillieul, John
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [25] A Multi-Terrain Robot Prototype With Archimedean Screw Actuators: Design, Realization, Modeling, and Control
    Gkliva, Roza
    Remmas, Walid
    Godon, Simon
    Rebane, Jaan
    Ochs, Kilian
    Kruusmaa, Maarja
    Ristolainen, Asko
    IEEE ACCESS, 2024, 12 : 95820 - 95830
  • [26] Visual Terrain Classification by Flying Robots
    Khan, Yasir Niaz
    Masselli, Andreas
    Zell, Andreas
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 498 - 503
  • [27] Deep Multi-Layer Perception Based Terrain Classification for Planetary Exploration Rovers
    Bai, Chengchao
    Guo, Jifeng
    Guo, Linli
    Song, Junlin
    SENSORS, 2019, 19 (14)
  • [28] VISUAL PERCEPTION BEYOND ATMOSPHERE
    REYNOLDS, HN
    AEROSPACE MEDICINE, 1969, 40 (06): : 615 - +
  • [29] Untethered Robotic Millipede Driven by Low-Pressure Microfluidic Actuators for Multi-Terrain Exploration
    Shao, Qi
    Dong, Xuguang
    Lin, Zhonghan
    Tang, Chao
    Sun, Hao
    Liu, Xin-Jun
    Zhao, Huichan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 12142 - 12149
  • [30] RoVaLL: Design and Development of a Multi-Terrain Towed Robot With Variable Lug-Length Wheels
    Salazar Luces, Jose Victorio
    Matsuzaki, Shin
    Hirata, Yasuhisa
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 6017 - 6024