Quantum three-body problems

被引:14
|
作者
Ma, ZQ [1 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum three-body problems; Schrodinger equation; separation of the rotational degrees of freedom;
D O I
10.1007/BF02898245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A scheme for dealing with the quantum three-body problem is presented to separate the rotational degrees of freedom completely from the internal ones. In this method, the three-body Schrodinger equation is reduced to a system of coupled partial differential equations, depending only upon three internal variables. For arbitrary total orbital angular momentum l and the parity ( -1)(l+lambda) (lambda = 0 or 1), the number of the equations in this system is l + 1 - lambda. By expanding the wavefunction with respect to a complete set of orthonormal basis functions, the system of equations is further reduced to a system of linear algebraic equations.
引用
收藏
页码:1093 / 1107
页数:15
相关论文
共 50 条
  • [21] Quantum phase transition in symmetric quantum three-body system
    Anjan Sadhukhan
    Santanu Mondal
    Sujay Kr. Nayek
    Jayanta K. Saha
    The European Physical Journal D, 2021, 75
  • [22] Three-Body Coulomb Problems with Generalized Sturmian Functions
    Gasaneo, G.
    Ancarani, L. U.
    Mitnik, D. M.
    Randazzo, J. M.
    Frapiccini, A. L.
    Colavecchia, F. D.
    PROCEEDINGS OF MEST 2012: EXPONENTIAL TYPE ORBITALS FOR MOLECULAR ELECTRONIC STRUCTURE THEORY, 2013, 67 : 153 - 216
  • [23] Three-body scattering in Poincaré-invariant quantum mechanics
    W. N. Polyzou
    T. Lin
    Ch. Elster
    W. Glöckle
    Few-Body Systems, 2008, 44 : 287 - 289
  • [24] Three-body scattering in Poincar,-invariant quantum mechanics
    Polyzou, W. N.
    Lin, T.
    Elster, Ch.
    Glockle, W.
    FEW-BODY SYSTEMS, 2008, 44 (1-4) : 287 - 289
  • [25] Can Three-Body Recombination Purify a Quantum Gas?
    Dogra, Lena H.
    Glidden, Jake A. P.
    Hilker, Timon A.
    Eigen, Christoph
    Cornell, Eric A.
    Smith, Robert P.
    Hadzibabic, Zoran
    PHYSICAL REVIEW LETTERS, 2019, 123 (02)
  • [26] Quantum subdiffusion with two- and three-body interactions
    Igor I. Yusipov
    Tetyana V. Laptyeva
    Anna Yu. Pirova
    Iosif B. Meyerov
    Sergej Flach
    Mikhail V. Ivanchenko
    The European Physical Journal B, 2017, 90
  • [27] Efficient solution of three-body quantum collision problems: Application to the Temkin-Poet model
    Jones, S
    Stelbovics, AT
    PHYSICAL REVIEW A, 2002, 66 (03):
  • [28] Three-body quantum Coulomb problem: Analytic continuation
    Turbiner, A. V.
    Lopez Vieyra, J. C.
    Olivares Pilon, H.
    MODERN PHYSICS LETTERS A, 2016, 31 (28)
  • [29] Nonintegrability of the three-body problems for the classical helium atom
    Stuchi, T. J.
    Lopez-Castillo, A.
    Almeida, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (09)
  • [30] Unitary quantum three-body problem in a harmonic trap
    Werner, Felix
    Castin, Yvan
    PHYSICAL REVIEW LETTERS, 2006, 97 (15)