Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models

被引:129
|
作者
Yousefi, Safoora [1 ]
Amrollahi, Fatemeh [1 ]
Amgad, Mohamed [1 ]
Dong, Chengliang [2 ]
Lewis, Joshua E. [3 ,4 ]
Song, Congzheng [5 ]
Gutman, David A. [6 ]
Halani, Sameer H. [4 ]
Vega, Jose Enrique Velazquez [7 ]
Brat, Daniel J. [7 ,8 ]
Cooper, Lee A. D. [1 ,3 ,4 ,8 ]
机构
[1] Emory Univ, Dept Biomed Informat, Sch Med, Atlanta, GA 30322 USA
[2] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
[3] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, Atlanta, GA 30322 USA
[5] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[6] Emory Univ, Dept Neurol, Sch Med, Atlanta, GA 30322 USA
[7] Emory Univ, Dept Pathol & Lab Med, Sch Med, Atlanta, GA 30322 USA
[8] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
NETWORK; RECURRENCE; SIGNATURE; SUBTYPES;
D O I
10.1038/s41598-017-11817-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Translating the vast data generated by genomic platforms into accurate predictions of clinical outcomes is a fundamental challenge in genomic medicine. Many prediction methods face limitations in learning from the high-dimensional profiles generated by these platforms, and rely on experts to hand-select a small number of features for training prediction models. In this paper, we demonstrate how deep learning and Bayesian optimization methods that have been remarkably successful in general high-dimensional prediction tasks can be adapted to the problem of predicting cancer outcomes. We perform an extensive comparison of Bayesian optimized deep survival models and other state of the art machine learning methods for survival analysis, and describe a framework for interpreting deep survival models using a risk backpropagation technique. Finally, we illustrate that deep survival models can successfully transfer information across diseases to improve prognostic accuracy. We provide an open-source software implementation of this framework called SurvivalNet that enables automatic training, evaluation and interpretation of deep survival models.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Limitations of nomogram models in predicting survival outcomes for glioma patients
    Xue, Jihao
    Liu, Hang
    Jiang, Lu
    Yin, Qijia
    Chen, Ligang
    Wang, Ming
    FRONTIERS IN IMMUNOLOGY, 2025, 16
  • [42] Genomic landscape of metastatic lung adenocarcinomas from large-scale clinical sequencing
    Li, Dingbiao
    Huang, Yong
    Cai, Lijun
    Wu, Min
    Bao, Hua
    Xu, Yang
    Wei, Yulin
    Wu, Shuyu
    Wu, Xue
    Shao, Yang
    Zhao, Wei
    Lv, Guoli
    Huang, Shan
    Zhang, Tao
    Shi, Yunfei
    NEOPLASIA, 2021, 23 (12): : 1204 - 1212
  • [43] From pharmacological profiles to clinical outcomes
    Kerwin, R
    INTERNATIONAL CLINICAL PSYCHOPHARMACOLOGY, 2000, 15 : S1 - S4
  • [44] Distinct Genomic Profiles Are Associated with Treatment Response and Survival in Ovarian Cancer
    de Witte, Chris J.
    Kutzera, Joachim
    van Hoeck, Arne
    Luan Nguyen
    Boere, Ingrid A.
    Jalving, Mathilde
    Ottevanger, Petronella B.
    van Schaik-van de Mheen, Christa
    Stevense, Marion
    Kloosterman, Wigard P.
    Zweemer, Ronald P.
    Cuppen, Edwin
    Witteveen, Petronella O.
    CANCERS, 2022, 14 (06)
  • [45] Multimodal deep learning integrating MRI and molecular profiles for predicting outcomes in triple-negative breast cancer
    Park, S. H.
    Kim, J. Y.
    Park, J-L
    Jeong, J.
    Ahn, S. G.
    Kim, S-K
    ANNALS OF ONCOLOGY, 2024, 35 : S287 - S287
  • [46] PREDICTING SURVIVAL FROM PRIMARY CERVICAL CANCER BASED ON DEEP LEARNING IN HISTOPATHOLOGICAL IMAGES
    Guo, Qinhao
    Ju, Xingzhu
    Wu, Xiaohua
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2023, 33 (SUPPL_4) : A162 - A163
  • [47] Analysis of clinical features, genomic landscapes and survival outcomes in HER2-low breast cancer
    Jin, Juan
    Li, Bin
    Cao, Jianing
    Li, Ting
    Zhang, Jian
    Cao, Jun
    Zhao, Mingchuan
    Wang, Leiping
    Wang, Biyun
    Tao, Zhonghua
    Hu, Xichun
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [48] Analysis of clinical features, genomic landscapes and survival outcomes in HER2-low breast cancer
    Juan Jin
    Bin Li
    Jianing Cao
    Ting Li
    Jian Zhang
    Jun Cao
    Mingchuan Zhao
    Leiping Wang
    Biyun Wang
    Zhonghua Tao
    Xichun Hu
    Journal of Translational Medicine, 21
  • [49] Regional-Scale Models for Predicting Overwinter Survival of Juvenile Ungulates
    Hurley, Mark A.
    Hebblewhite, Mark
    Lukacs, Paul M.
    Nowak, J. Joshua
    Gaillard, Jean-Michel
    Bonenfant, Christophe
    JOURNAL OF WILDLIFE MANAGEMENT, 2017, 81 (03): : 364 - 378
  • [50] Learning to Train and to Explain a Deep Survival Model with Large-Scale Ovarian Cancer Transcriptomic Data
    Menand, Elena Spirina
    De Vries-Brilland, Manon
    Tessier, Leslie
    Dauve, Jonathan
    Campone, Mario
    Verriele, Veronique
    Jrad, Nisrine
    Marion, Jean-Marie
    Chauvet, Pierre
    Passot, Christophe
    Morel, Alain
    BIOMEDICINES, 2024, 12 (12)