Forced (2+1)-dimensional discrete three-wave equation

被引:7
|
作者
Zhu, Junyi [1 ]
Zhou, Sishou [2 ]
Qiao, Zhijun [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Kashgar Univ, Sch Math & Stat, Kashgar 844006, Xinjiang, Peoples R China
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
基金
中国国家自然科学基金;
关键词
discrete (2+1)-dimensional three-wave equation; partial derivative-dressing method; explicit solution; INVERSE SCATTERING; N-WAVE; TRANSFORMATION; EVOLUTION; SYSTEMS;
D O I
10.1088/1572-9494/ab5fb4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the partial derivative-dressing method to investigate a (2 + 1)-dimensional lattice, which can be regarded as a forced (2 + 1)-dimensional discrete three-wave equation. The soliton solutions to the (2 + 1)-dimensional lattice are given through constructing different symmetry conditions. The asymptotic analysis of one-soliton solution is discussed. For the soliton solution, the forces are zero.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] On the three-dimensional three-wave equation with self-consistent sources
    Hu, Juan
    Hu, Xing-Biao
    Tam, Hon-Wah
    PHYSICS LETTERS A, 2012, 376 (35) : 2402 - 2407
  • [22] An integrable (2+1)-dimensional Toda equation with two discrete variables
    Cao, Cewen
    Cao, Jianli
    PHYSICS LETTERS A, 2007, 365 (04) : 301 - 308
  • [23] Exact three-wave solutions for the (3+1)-dimensional Jimbo-Miwa equation
    Li, Zitian
    Dai, Zhengde
    Liu, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2062 - 2066
  • [24] Invariance Analysis of the (2+1) Dimensional Long Dispersive Wave Equation
    Senthil Velan M.
    Lakshmanan M.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 251 - 260
  • [25] The exact solutions to the generalized (2+1)-dimensional nonlinear wave equation
    Li, Jianping
    Xu, Can
    Lu, Junliang
    RESULTS IN PHYSICS, 2024, 58
  • [26] On Triply Periodic Wave Solutions for(2+1)-Dimensional Boussinesq Equation
    王军民
    CommunicationsinTheoreticalPhysics, 2012, 57 (04) : 563 - 567
  • [27] Different wave patterns for (2+1) dimensional Maccari's equation
    Thilakavathy, J.
    Amrutha, R.
    Subramanian, K.
    Rajan, M. S. Mani
    NONLINEAR DYNAMICS, 2022, 108 (01) : 445 - 456
  • [28] Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation
    Elmandouha, A. A.
    Ibrahim, A. G.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 139 - 147
  • [29] Rogue wave for the (2+1)-dimensional Kadomtsev-Petviashvili equation
    Xu, Zhenhui
    Chen, Hanlin
    Dai, Zhengde
    APPLIED MATHEMATICS LETTERS, 2014, 37 : 34 - 38
  • [30] Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation
    Liu, Jian-Guo
    Zhu, Wen-Hui
    CHINESE JOURNAL OF PHYSICS, 2020, 67 : 492 - 500