Soliton perturbations for a combined KdV-MKdV equation

被引:5
|
作者
Yan, JR [1 ]
Pan, LX [1 ]
Zhou, GH [1 ]
机构
[1] Hunan Normal Univ, Dept Phys, Changsha 410081, Peoples R China
关键词
D O I
10.1088/0256-307X/17/9/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The soliton perturbations for the combined Korteweg de Vries and modified Xorteweg de Vries (KdV-MKdV) equation are studied. The first-order effects of perturbation on a soliton, namely both the slow time-dependence of the soliton parameters and the first-order correction are derived through constructing the appropriate Green's function.
引用
收藏
页码:625 / 627
页数:3
相关论文
共 50 条
  • [31] New Soliton-like Solutions for Combined KdV and mKdV Equation
    ZHAO Qiang
    LIU Shi-Kuo
    FU Zun-Tao School of Physics
    Communications in Theoretical Physics, 2005, 43 (04) : 615 - 616
  • [32] New soliton-like solutions for combined KdV and mKdV equation
    Zhao, Q
    Liu, SK
    Fu, ZT
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (04) : 615 - 616
  • [33] New types of solitary-wave solutions from the combined KdV-mKdV equation
    Hong, WP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (01): : 117 - 118
  • [34] BaCKLUND TRANSFORMATION AND DIVERSE EXACT EXPLICIT SOLUTIONS OF THE FRACTAL COMBINED KdV-mKdV EQUATION
    Wang, Kang-Jia
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (09)
  • [35] Dynamical behavior of soliton solutions to the space-time fractional combined KDV-MKDV equation through two robust techniques
    Podder, Anamika
    Arefin, Mohammad Asif
    Ghazwani, Hassan Ali
    Uddin, M. Hafiz
    Akbar, M. Ali
    MODERN PHYSICS LETTERS B, 2024,
  • [36] Existence of Traveling Wave Fronts for a Generalized KdV-mKdV Equation
    Xu, Ying
    Du, Zengji
    MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (04) : 509 - 523
  • [37] Exact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficients
    Tang, Bo
    Wang, Xuemin
    Fan, Yingzhe
    Qu, Junfeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [38] The Exact Travelling Wave Solutions of Generalized KdV-mKdV Equation
    Zhou, Yu
    Yu, Jicai
    Wang, Ying
    INTERNATIONAL CONFERENCE ON FRONTIERS OF ENERGY, ENVIRONMENTAL MATERIALS AND CIVIL ENGINEERING (FEEMCE 2013), 2013, : 538 - 543
  • [39] Jacobi, elliptic function solutions to the coupled KdV-mKdV equation
    Pan Jun-Ting
    Gong Lun-Xun
    ACTA PHYSICA SINICA, 2007, 56 (10) : 5585 - 5590
  • [40] Differential invariants for CDG equation and coupled KDV-MKDV equations
    Ding Qi
    Hao Ai-Jing
    ACTA PHYSICA SINICA, 2014, 63 (11)