On polyharmonic interpolation

被引:2
|
作者
Haussmann, Werner
Kounchev, Ognyan
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Univ Duisburg Essen, Dept Math, D-47057 Duisburg, Germany
关键词
polyharmonic functions; multivariate interpolation;
D O I
10.1016/j.jmaa.2006.09.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we will introduce a new approach to multivariate interpolation by employing polyharmonic functions as interpolants, i.e. by solutions of higher order elliptic equations. We assume that the data arise from C-infinity or analytic functions in the ball B-R. We prove two main results on the interpolation of C-infinity or analytic functions f in the ball B-R by polyharmonic functions h of a given order of polyharmonicity p. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:840 / 849
页数:10
相关论文
共 50 条
  • [31] Polyharmonic functions on trees
    Cohen, JM
    Colonna, F
    Gowrisankaran, K
    Singman, D
    AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (05) : 999 - 1043
  • [32] Polyharmonic Approximation on the Sphere
    T. Hangelbroek
    Constructive Approximation, 2011, 33 : 77 - 92
  • [33] Compositions of polyharmonic mappings
    Liu, Gang
    Ponnusamy, Saminathan
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VII, 2017, 699 : 209 - 221
  • [34] A Note on Polyharmonic Mappings
    Daoud Bshouty
    Stavros Evdoridis
    Antti Rasila
    Computational Methods and Function Theory, 2022, 22 : 433 - 443
  • [35] A CHARACTERIZATION OF POLYHARMONIC FUNCTIONS
    Lysik, G.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 386 - 395
  • [36] SOLUTION OF POLYHARMONIC EQUATIONS
    ROITMAN, AB
    SHISHKANOVA, SF
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (05): : 433 - 437
  • [37] A note on polyharmonic functions
    Stevic, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (01) : 243 - 249
  • [38] REFLECTION OF POLYHARMONIC FUNCTIONS
    KRAFT, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 22 (03) : 670 - &
  • [39] HARMONIC AND POLYHARMONIC DEGENERACY
    CHUNG, LO
    SARIO, L
    WANG, C
    MATHEMATICA SCANDINAVICA, 1977, 40 (02) : 288 - 292
  • [40] POLYHARMONIC CARDINAL SPLINES
    MADYCH, WR
    NELSON, SA
    JOURNAL OF APPROXIMATION THEORY, 1990, 60 (02) : 141 - 156