On abelian (2n, n, 2n, 2)-difference sets

被引:3
|
作者
Hiramine, Yutaka [1 ]
机构
[1] Kumamoto Univ, Dept Math, Fac Educ, Kumamoto, Japan
关键词
Relative difference set; Semi-regular; Abelian group; Group ring;
D O I
10.1016/j.jcta.2009.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In their article A. Blokhuis, D. Jungnickel and B. Schmidt (2002) [1] have shown that if an abelian (n, n, n, 1)-difference set exists, then n is a power of a prime. In this article we prove that if an abelian (2n, n, 2n, 2)-difference set exists, then n is a power of 2 except in a few special cases. This is also a generalization of one of T. Feng and Q. Xiang's (2008) [2] results in the abelian case. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:996 / 1003
页数:8
相关论文
共 50 条
  • [41] THE CHERN CHARACTER OF THE SYMMETRICAL SPACE SU(2N)/SO(2N)
    WATANABE, T
    OSAKA JOURNAL OF MATHEMATICS, 1994, 31 (04) : 923 - 938
  • [42] L-packets of quasisplit GSp(2n) and GO(2n)
    Bin Xu
    Mathematische Annalen, 2018, 370 : 71 - 189
  • [43] New weighing matrices of order 2n and weight 2n - 5
    Kotsireas, Ilias S.
    Koukouvinos, Christos
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 70 : 197 - 205
  • [44] THE EQUIVALENCE OF SP(2N) AND SO(-2N) GAUGE-THEORIES
    MKRTCHYAN, RL
    PHYSICS LETTERS B, 1981, 105 (2-3) : 174 - 176
  • [45] Intriguing Sets of Points of Q(2n, 2) \Q +(2n-1, 2)
    De Bruyn, Bart
    GRAPHS AND COMBINATORICS, 2012, 28 (06) : 791 - 805
  • [46] ON THE EQUATION X(N)+(X+A)(N)=Y(2N)+(Y+B)(2N)
    MAZUR, M
    SMOKTUNOWICZ, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (03): : 309 - 314
  • [47] Bis{μ-N-[(dimethylamino)dimethylsilyl]-2,6-dimethylanilido}-κ2N:N′;κ2N′:Ndicopper(I)
    Chen, Juan
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2010, 66 : M1472 - U1255
  • [48] K2n+1 That Are (2n
    Longani, Vites
    Yingtaweesittikul, Hatairat
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (04): : 1875 - 1880
  • [49] 2n or not 2n: Aneuploidy, polyploidy and chromosomal instability in primary and tumor cells
    Zasadil, Lauren M.
    Britigan, Eric M. C.
    Weaver, Beth A.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2013, 24 (04) : 370 - 379
  • [50] GLOBAL L-PACKETS OF QUASISPLIT GSp(2n) AND GO(2n)
    Xu, Bin
    AMERICAN JOURNAL OF MATHEMATICS, 2025, 147 (02)