The Analysis and Forecasting of Stock Price with Deep Learning

被引:0
|
作者
Site, Atakan [1 ]
Isik, Zerrin [2 ]
机构
[1] Dokuz Eylul Univ, Fen Bilimleri Enstitusu, Izmir, Turkey
[2] Dokuz Eylul Univ, Bilgisayar Muhendisligi Bolumu, Izmir, Turkey
关键词
Convolutional Neural Network; Long Short-Term Memory Network; stock market forecasting; feature selection; technical indicator; PREDICTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stock forecasting is one of the most popular topics nowadays. The dynamic, noisy and long-term dependence of stock market data makes its future prediction more difficult. This requires the use of additional data for successful prediction. In this study, the closing values of the stock data are predicted on a weekly basis by using the extended data set using various technical indicators and different independent variables. AAPL, NVDA, and GOOG stocks in the NASDAQ index were studied for the experiments. 20 different technical indicators obtained from daily stocks; different feature selection techniques were applied and then used as a feature vector for each day of the data. With the calculated technical indicators, a high dimensional feature space was created for data points that normally cover noise. We compare a multi layered Convolutional Neural Network (CNN) model, which we believe has achieved consistent results for prediction stock closing values, as well as a Long Short-Term Memory with Peephole (LST MP) approach, which can cope well with long-term dependencies such as stock market data.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Stock Market Forecasting Based on Spatiotemporal Deep Learning
    Li, Yung-Chen
    Huang, Hsiao-Yun
    Yang, Nan-Ping
    Kung, Yi-Hung
    ENTROPY, 2023, 25 (09)
  • [42] Deep Learning for Stock Price Prediction and Portfolio Optimization
    Sebastian, Ashy
    Tantia, Dr. Veerta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (09) : 926 - 941
  • [43] Stock Price Prediction with ARIMA and Deep Learning Models
    Gao, Zihao
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2021), 2021, : 61 - 68
  • [44] Comparison of Deep Learning algorithms for cryptocurrencies price forecasting
    Lambis-Alandete, Erick
    Jimenez-Gomez, Miguel
    Velasquez-Henao, Juan D.
    INGENIERIA Y COMPETITIVIDAD, 2023, 25 (03):
  • [45] Carbon price forecasting: a novel deep learning approach
    Zhang, Fang
    Wen, Nuan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (36) : 54782 - 54795
  • [46] An Improved Deep Learning Model for Electricity Price Forecasting
    Iqbal, Rashed
    Mokhlis, Hazlie
    Khairuddin, Anis Salwa Mohd
    Muhammad, Munir Azam
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2024, 9 (01):
  • [47] A Mechanism for Bitcoin Price Forecasting using Deep Learning
    Ateeq, Karamath
    Al Zarooni, Ahmed Abdelrahim
    Rehman, Abdur
    Khan, Muhammd Adna
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 441 - 448
  • [48] Power Market Price Forecasting via Deep Learning
    Zhu, Yongli
    Dai, Renchang
    Liu, Guangyi
    Wang, Zhiwei
    Lu, Songtao
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 4935 - 4939
  • [49] Carbon price forecasting: a novel deep learning approach
    Fang Zhang
    Nuan Wen
    Environmental Science and Pollution Research, 2022, 29 : 54782 - 54795
  • [50] Price Forecasting with Deep Learning in Business to Consumer Markets
    Egriboz, Emre
    Aktas, Mehmet S.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT VI, 2021, 12954 : 565 - 580