Post-translational disruption of the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR)-molecular chaperone complex with geldanamycin stabilizes ΔF508 CFTR in the rabbit reticulocyte lysate

被引:50
|
作者
Fuller, W [1 ]
Cuthbert, AW [1 ]
机构
[1] Univ Cambridge, Dept Pharmacol, Cambridge CB2 1QJ, England
关键词
D O I
10.1074/jbc.M006278200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Delta F508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) is a trafficking mutant, which is retained and degraded in the endoplasmic reticulum by the ubiquitin-proteasome pathway. The mutant protein fails to reach a completely folded conformation that is no longer a substrate for ubiquitination ("stable B"). Wild type protein reaches this state with 25% efficiency. In this study the rabbit reticulocyte lysate with added microsomal membranes has been used to reproduce the post-translational events in the folding of wild type and Delta F508 CFTR. In this system wild type CFTR does not reach the stable B form if the post-translational temperature is 37 degreesC, whereas at 30 degreesC the behavior of both wild type and mutant proteins mimics that observed in the cell. Geldanamycin stabilizes Delta F508 CFTR with respect to ubiquitination only when added post-translationally. The interaction of wild type and mutant CFTR with the molecular chaperones heat shock cognate 70 (hsc70) and heat shock protein 90 (hsp90) has been assessed. Release of wild type protein from hsc70 coincides with the cessation of ubiquitination and formation of stable B. Geldanamycin immediately prevents the binding of hsp90 to Delta F508 CFTR, and after a delay releases it from hsc70. Release of mutant protein from hsc70 also coincides with the formation of stable B Delta F508 CFTR.
引用
收藏
页码:37462 / 37468
页数:7
相关论文
共 50 条
  • [31] Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): Slow degradation of wild-type and Delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells
    Wei, XF
    Eisman, R
    Xu, J
    Harsch, AD
    Mulberg, AE
    Bevins, CL
    Glick, MC
    Scanlin, TF
    JOURNAL OF CELLULAR PHYSIOLOGY, 1996, 168 (02) : 373 - 384
  • [32] ΔF508 CFTR localizes in the endoplasmic reticulum Golgi intermediate compartment in cystic fibrosis cells
    Gilbert, A
    Jadot, M
    Leontieva, E
    Wattiaux-De Coninck, S
    Wattiaux, R
    EXPERIMENTAL CELL RESEARCH, 1998, 242 (01) : 144 - 152
  • [33] The Cystic Fibrosis-causing Mutation ΔF508 Affects Multiple Steps in Cystic Fibrosis Transmembrane Conductance Regulator Biogenesis
    Thibodeau, Patrick H.
    Richardson, John M., III
    Wang, Wei
    Millen, Linda
    Watson, Jarod
    Mendoza, Juan L.
    Du, Kai
    Fischman, Sharon
    Senderowitz, Hanoch
    Lukacs, Gergely L.
    Kirk, Kevin
    Thomas, Philip J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (46) : 35825 - 35835
  • [34] The ΔF508 Mutation Causes CFTR Misprocessing and Cystic Fibrosis-Like Disease in Pigs
    Ostedgaard, Lynda S.
    Meyerholz, David K.
    Chen, Jeng-Haur
    Pezzulo, Alejandro A.
    Karp, Philip H.
    Rokhlina, Tatiana
    Ernst, Sarah E.
    Hanfland, Robert A.
    Reznikov, Leah R.
    Ludwig, Paula S.
    Rogan, Mark P.
    Davis, Greg J.
    Dohrn, Cassie L.
    Wohlford-Lenane, Christine
    Taft, Peter J.
    Rector, Michael V.
    Hornick, Emma
    Nassar, Boulos S.
    Samuel, Melissa
    Zhang, Yuping
    Richter, Sandra S.
    Uc, Aliye
    Shilyansky, Joel
    Prather, Randall S.
    McCray, Paul B., Jr.
    Zabner, Joseph
    Welsh, Michael J.
    Stoltz, David A.
    SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (74)
  • [35] SERCA pump inhibitors do not correct biosynthetic arrest of ΔF508 CFTR in cystic fibrosis
    Grubb, BR
    Gabriel, SE
    Mengos, A
    Gentzsch, M
    Randell, SH
    Van Heeckeren, AM
    Knowles, MR
    Drumm, ML
    Riordan, JR
    Boucher, RC
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2006, 34 (03) : 355 - 363
  • [36] Calnexin Δ185-520 partially reverses the misprocessing of the ΔF508 cystic fibrosis transmembrane conductance regulator
    Okiyoneda, T
    Wada, I
    Jono, H
    Shuto, T
    Yoshitake, K
    Nakano, N
    Nagayama, S
    Harada, K
    Isohama, Y
    Miyata, T
    Kai, H
    FEBS LETTERS, 2002, 526 (1-3) : 87 - 92
  • [37] In vivo activation of the cystic fibrosis transmembrane conductance regulator mutant Delta F508 in murine nasal epithelium
    Kelley, TJ
    Thomas, K
    Milgram, LJH
    Drumm, ML
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) : 2604 - 2608
  • [38] Chemical chaperones correct the mutant phenotype of the Delta F508 cystic fibrosis transmembrane conductance regulator protein
    Brown, CR
    HongBrown, LQ
    Biwersi, J
    Verkman, AS
    Welch, WJ
    CELL STRESS & CHAPERONES, 1996, 1 (02): : 117 - 125
  • [39] The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis
    Bergbower, Emily
    Boinot, Clement
    Sabirzhanova, Inna
    Guggino, William
    Cebotaru, Liudmila
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 45 (02) : 639 - 655
  • [40] Mild processing defect of porcine ΔF508-CFTR suggests that ΔF508 pigs may not develop cystic fibrosis disease
    Liu, Yanli
    Wang, Ying
    Jiang, Yong
    Zhu, Na
    Liang, Haitao
    Xu, Lina
    Feng, Xuechao
    Yang, Hong
    Ma, Tonghui
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 373 (01) : 113 - 118