Asymptotic inference of least absolute deviation estimation for AR(1) processes

被引:3
|
作者
Wang, Xinghui [1 ,2 ]
Wang, Huilong [1 ]
Wang, Hongrui [1 ]
Hu, Shuhe [1 ]
机构
[1] Anhui Univ, Dept Stat, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Inst Innovat Dev Strategy, Hefei, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Uniform limit; nearly stationary autoregression; mildly explosive autoregression; least absolute deviation estimation; MILDLY EXPLOSIVE AUTOREGRESSION; MODERATE DEVIATIONS; LIMIT THEORY; LAD ESTIMATION; REGRESSION; PARAMETER;
D O I
10.1080/03610926.2018.1549252
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a first-order autoregressive process y(t) = rho(n)y(t-1) + u(t) with n vertical bar 1-rho(n)vertical bar -> infinity as n -> infinity. The Gaussian limit theory and the Cauchy limit theory of the least absolute deviation estimator for the near-stationary process (rho(n) is an element of [0; 1)) and the mildly explosive process (rho(n)>1) are derived, respectively. The results are complementary to the uniform limit theory of least squares estimators for stationary autoregressions in Giraitis and Phillips (2006). Some simulations are carried out to assess the performance of our procedure.
引用
收藏
页码:809 / 826
页数:18
相关论文
共 50 条
  • [21] Optimization techniques for multivariate least trimmed absolute deviation estimation
    Zioutas, G.
    Chatzinakos, C.
    Nguyen, T. D.
    Pitsoulis, L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 781 - 797
  • [22] Least absolute deviation estimation of autoregressive conditional duration model
    Liu Wei
    Hui-min Wang
    Min Chen
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 243 - 254
  • [23] Least absolute deviation estimation of autoregressive conditional duration model
    Liu, Wei
    Wang, Hui-min
    Chen, Min
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (02): : 243 - 254
  • [24] Predictive visual tracking based on least absolute deviation estimation
    Cai, Rongtai
    Wang, Yanjie
    CHINESE OPTICS LETTERS, 2008, 6 (01) : 35 - 37
  • [25] Weighted least absolute deviations estimation for an AR(1) process with ARCH(1) errors
    Chan, NH
    Peng, L
    BIOMETRIKA, 2005, 92 (02) : 477 - 484
  • [26] Asymptotic inference for nearly nonstationary AR(1) processes with possibly infinite variance
    Hwang, Kyo-Shin
    Pang, Tian-Xiao
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (22) : 2374 - 2379
  • [27] Estimation and Asymptotic Inference in the AR-ARCH Model
    Lange, Theis
    Rahbek, Anders
    Jensen, Soren Tolver
    ECONOMETRIC REVIEWS, 2011, 30 (02) : 129 - 153
  • [28] On the Asymptotic Distribution of a Weighted Least Absolute Deviation Estimate for a Bifurcating Autoregressive Process
    Terpstra, Jeff T.
    ROBUST RANK-BASED AND NONPARAMETRIC METHODS, 2016, 168 : 81 - 100
  • [29] Least Absolute Deviation Cut
    Yu, Jian
    Jing, Liping
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, 2011, 6954 : 743 - 752
  • [30] Analysis of least absolute deviation
    Chen, Kani
    Ying, Zhiliang
    Zhang, Hong
    Zhao, Lincheng
    BIOMETRIKA, 2008, 95 (01) : 107 - 122