Asymptotic inference of least absolute deviation estimation for AR(1) processes

被引:3
|
作者
Wang, Xinghui [1 ,2 ]
Wang, Huilong [1 ]
Wang, Hongrui [1 ]
Hu, Shuhe [1 ]
机构
[1] Anhui Univ, Dept Stat, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Inst Innovat Dev Strategy, Hefei, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Uniform limit; nearly stationary autoregression; mildly explosive autoregression; least absolute deviation estimation; MILDLY EXPLOSIVE AUTOREGRESSION; MODERATE DEVIATIONS; LIMIT THEORY; LAD ESTIMATION; REGRESSION; PARAMETER;
D O I
10.1080/03610926.2018.1549252
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a first-order autoregressive process y(t) = rho(n)y(t-1) + u(t) with n vertical bar 1-rho(n)vertical bar -> infinity as n -> infinity. The Gaussian limit theory and the Cauchy limit theory of the least absolute deviation estimator for the near-stationary process (rho(n) is an element of [0; 1)) and the mildly explosive process (rho(n)>1) are derived, respectively. The results are complementary to the uniform limit theory of least squares estimators for stationary autoregressions in Giraitis and Phillips (2006). Some simulations are carried out to assess the performance of our procedure.
引用
收藏
页码:809 / 826
页数:18
相关论文
共 50 条
  • [1] Least absolute deviation estimation for AR(1) processes with roots close to unity
    Ma, Nannan
    Sang, Hailin
    Yang, Guangyu
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (05) : 799 - 832
  • [2] Least absolute deviation estimation for AR(1) processes with roots close to unity
    Nannan Ma
    Hailin Sang
    Guangyu Yang
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 799 - 832
  • [3] Least absolute deviation estimation for AR(1) processes with roots close to unity
    Zhengzhou Zhongyuan Sub-branch, Agricultural Bank of China, 101 Funiu Road, Zhongyuan District, Henan, Zhengzhou
    450007, China
    不详
    MS
    38677, United States
    不详
    450001, China
    Annal. Inst. Stat. Math., 5 (799-832): : 799 - 832
  • [4] Bootstrap Inference for Garch Models by the Least Absolute Deviation Estimation
    Zhu, Qianqian
    Zeng, Ruochen
    Li, Guodong
    JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (01) : 21 - 40
  • [5] LEAST ABSOLUTE DEVIATION ESTIMATION FOR UNIT ROOT PROCESSES WITH GARCH ERRORS
    Li, Guodong
    Li, Wai Keung
    ECONOMETRIC THEORY, 2009, 25 (05) : 1208 - 1227
  • [6] LEAST ABSOLUTE DEVIATION ESTIMATION OF A SHIFT
    BAI, JS
    ECONOMETRIC THEORY, 1995, 11 (03) : 403 - 436
  • [7] ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES
    CHAN, NH
    WEI, CZ
    ANNALS OF STATISTICS, 1987, 15 (03): : 1050 - 1063
  • [8] Smoothed least absolute deviation estimation methods
    He, Yanfei
    Xuan, Wenhui
    Shi, Jianhong
    Yu, Ping
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [9] Asymptotic inference for AR(1) processes with (nonnormal) stable errors
    J. Mijnheer
    Journal of Mathematical Sciences, 1997, 83 (3) : 401 - 406
  • [10] ASYMPTOTIC INFERENCE FOR DISCRETE VECTOR AR PROCESSES
    ARATO, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1989, 36 (1-4): : 9 - 13