Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning

被引:39
|
作者
Liu, Jie [1 ]
Zhou, Kaibo [2 ]
Yang, Chaoying [2 ]
Lu, Guoliang [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[3] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
基金
国家重点研发计划;
关键词
imbalanced fault diagnosis; graph feature earning; rotating machinery; autoencoder; NEURAL-NETWORK; BEARINGS; SIGNAL; MODEL; GRAPH;
D O I
10.1007/s11465-021-0652-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state. However, the collection of fault signals is very difficult and expensive, resulting in the problem of imbalanced training dataset. It will degrade the performance of fault diagnosis methods significantly. To address this problem, an imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning is proposed in this paper. Unsupervised autoencoder is firstly used to compress every monitoring signal into a low-dimensional vector as the node attribute in the SuperGraph. And the edge connections in the graph depend on the relationship between signals. On the basis, graph convolution is performed on the constructed SuperGraph to achieve imbalanced training dataset fault diagnosis for rotating machinery. Comprehensive experiments are conducted on a benchmarking publicized dataset and a practical experimental platform, and the results show that the proposed method can effectively achieve rotating machinery fault diagnosis towards imbalanced training dataset through graph feature learning.
引用
收藏
页码:829 / 839
页数:11
相关论文
共 50 条
  • [21] An efficient method for imbalanced fault diagnosis of rotating machinery
    Yang, Jingli
    Yin, Shuangyan
    Gao, Tianyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
  • [22] Deep Morphological Shrinkage Convolutional Autoencoder-Based Feature Learning of Vibration Signals for Gearbox Fault Diagnosis
    Ye, Zhuang
    Yue, Shang
    Yang, Pu
    Zhou, Ruixu
    Yu, Jianbo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [23] Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
    Li, Chuan
    Sanchez, Rene-Vinicio
    Zurita, Grover
    Cerrada, Mariela
    Cabrera, Diego
    SENSORS, 2016, 16 (06)
  • [24] Autoencoder-based Fault Diagnosis for Grinding System
    Qu Xing-yu
    Zeng Peng
    Fu Dong-dong
    Xu Chengcheng
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3867 - 3872
  • [25] Using bispectral distribution as a feature for rotating machinery fault diagnosis
    Jiang, Lingli
    Liu, Yilun
    Li, Xuejun
    Tang, Siwen
    MEASUREMENT, 2011, 44 (07) : 1284 - 1292
  • [26] Autoencoder-based Fault Diagnosis for Hydropower Plants
    Hajimohammadali, Fatemeh
    Fontana, Nunzia
    Tucci, Mauro
    Crisostomi, Emanuele
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [27] Feature Denoising-based Fault Diagnosis for Rotating machinery
    Hq, Qin
    Si, Xiao-Sheng
    Lv, Yun-Rong
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 284 - 287
  • [28] Sparse representation learning for fault feature extraction and diagnosis of rotating machinery
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [29] Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning
    Xu, Qifa
    Lu, Shixiang
    Jia, Weiyin
    Jiang, Cuixia
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (06) : 1467 - 1481
  • [30] Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning
    Qifa Xu
    Shixiang Lu
    Weiyin Jia
    Cuixia Jiang
    Journal of Intelligent Manufacturing, 2020, 31 : 1467 - 1481