Real-Time Age Detection Using a Convolutional Neural Network

被引:1
|
作者
Sithungu, Siphesihle [1 ]
Van der Haar, Dustin [1 ]
机构
[1] Univ Johannesburg, Acad Comp Sci & Software Engn, Johannesburg, South Africa
关键词
Age detection; Convolutional Neural Network; Computer vision; Machine learning;
D O I
10.1007/978-3-030-20482-2_20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of determining people's age is a recurring theme in areas such as law enforcement, education and sports because age is often used to determine eligibility. The aim of current work is to make use of a lightweight machine learning model for automating the task of detecting people's age. This paper presents a solution that makes use of a lightweight Convolutional Neural Network model, built according to a modification of the LeNet-5 architecture to perform age detection, for both males and females, in real-time. The UTK-Face Large Scale Face Dataset was used to train and test the performance of the model in terms of predicting age. To evaluate the model's performance in real-time, Haar Cascades were used to detect faces from video feeds. The detected faces were fed to the model for it to make age predictions. Experimental results showed that age-detection can be performed in real-time. Although, the prediction accuracy of the model requires improvement.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [21] Real-Time Video Object Recognition Using Convolutional Neural Network
    Ahn, Byungik
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [22] Real-time, simultaneous myoelectric control using a convolutional neural network
    Ameri, Ali
    Akhaee, Mohammad Ali
    Scheme, Erik
    Englehart, Kevin
    PLOS ONE, 2018, 13 (09):
  • [23] Real-time goat face recognition using convolutional neural network
    Billah, Masum
    Wang, Xihong
    Yu, Jiantao
    Jiang, Yu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [24] Detection of Real Time Face Mask using Convolutional Neural Network
    Jeyaprakash, N.
    Devi, Nivethitha M.
    Vignesh, A.
    Vignesh, L.
    Sudhakar, T. D.
    2023 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS, ICEES, 2023, : 446 - 449
  • [25] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    PLOS ONE, 2019, 14 (03):
  • [26] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [27] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [28] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [29] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [30] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336