Quantum squeezing of slow-light solitons

被引:6
|
作者
Zhu, Jinzhong [1 ]
Zhang, Qi [1 ]
Huang, Guoxiang [1 ,2 ,3 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] New York Univ Shanghai, NYU ECNU Joint Inst Phys, Shanghai 200062, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL SOLITONS; INDUCED TRANSPARENCY; SYSTEMS; FIBERS; NOISE; PROPAGATION; CONTINUUM;
D O I
10.1103/PhysRevA.103.063512
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the quantum squeezing of slow-light solitons generated in a Lambda-shaped three-level atomic system working under condition of electromagnetically induced transparency (EIT). Starting from the Heisenberg-Langevin and Maxwell equations governing the quantum dynamics of atoms and probe laser field, we derive a quantum nonlinear Schrodinger equation controlling the evolution of the probe-field envelope. By using a direct perturbation approach to diagonalize the effective Hamiltonian (where the atomic variables have been eliminated), we carry out a detailed calculation on the quantum fluctuations of a slow-light soliton, expanded as a superposition of the complete and orthonormalized set of eigenfunctions obtained by solving the Bogoliubov-de Gennes (BdG) equations describing the quantum fluctuations. We show that due to the giant Kerr nonlinearity contributed from the EIT effect, significant quantum squeezing of the slow-light soliton can be realized within a short propagation distance. The results reported here are helpful for understanding the quantum property of slow-light solitons and for realizing light squeezing via EIT in cold atomic gases experimentally.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Slow-light dark solitons in insulator-insulator-metal plasmonic waveguides
    Fitrakis, E. P.
    Kamalakis, Thomas
    Sphicopoulos, Thomas
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (09) : 1701 - 1706
  • [22] Slow-light solitons in three-level atomic systems modified by a microwave field
    L. Li
    G. X. Huang
    The European Physical Journal D, 2010, 58 : 339 - 348
  • [23] Slow-Light Frequency Combs and Dissipative Kerr Solitons in Coupled-Cavity Waveguides
    Vasco, J. P.
    Savona, V
    PHYSICAL REVIEW APPLIED, 2019, 12 (06):
  • [24] Slow-light solitons in three-level atomic systems modified by a microwave field
    Li, L.
    Huang, G. X.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (03): : 339 - 348
  • [25] Theory of a slow-light catastrophe
    Leonhardt, U
    PHYSICAL REVIEW A, 2002, 65 (04): : 15
  • [26] Dynamics of slow-light formation
    Cerboneschi, E
    Renzoni, F
    Arimondo, E
    OPTICS COMMUNICATIONS, 2002, 208 (1-3) : 125 - 130
  • [27] Quantum information processing through quantum dots in slow-light photonic crystal waveguides
    Wong, C. W.
    Gao, J.
    McMillan, J. F.
    Sun, F. W.
    Bose, R.
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2009, 7 (01) : 47 - 55
  • [28] Ultrahigh sensitivity of slow-light gyroscope
    Leonhardt, U
    Piwnicki, P
    PHYSICAL REVIEW A, 2000, 62 (05): : 055801 - 055801
  • [29] Slow-light propagation using mode locking of spin precession in quantum dots
    Shabaev, A.
    Dutton, Z.
    Kennedy, T. A.
    Efros, Al L.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [30] Slow-light soliton beam splitters
    Shou, Chong
    Huang, Guoxiang
    PHYSICAL REVIEW A, 2019, 99 (04)