Generalized rainbow connectivity of graphs

被引:0
|
作者
Uchizawa, Kei [1 ]
Aoki, Takanori [2 ]
Ito, Takehiro [2 ]
Zhou, Xiao [2 ]
机构
[1] Yamagata Univ, Grad Sch Sci & Engn, Yonezawa, Yamagata 9928510, Japan
[2] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
关键词
Cactus; Fixed parameter tractability; Graph algorithm; Rainbow connectivity; Tree;
D O I
10.1016/j.tcs.2014.01.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let C = {c(1), c(2), ..., c(k)} be a set of k colors, and let (l) over right arrow = (l(1), l(2), ..., l(k)) be a k-tuple of nonnegative integers l(1), l(2), ..., l(k). For a graph G = (V, E), let f : E -> C be an edgecoloringof G in which two adjacent edges may have the same color. Then, the graph G edge-colored by f is (l) over right arrow -rainbow connected if every two vertices of G have a path Pconnecting them such that the number of edges on P that are colored with c(j) is at most for each index j epsilon {1, 2, ..., k}. Given a k-tuple (l) over right arrow and an edge-colored graph, we study the problem of determining whether the edge-colored graph is (l) over right arrow -rainbow connected. In this paper, we first study the computational complexity of the problem with regard to certain graph classes: the problem is NP-complete even for cacti, while is solvable in polynomial time for trees. We then give an FPT algorithm for general graphs when parameterized by both k and l(max) = max{l(j) vertical bar 1 <= j <= k}. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 50 条
  • [21] Generalized cycle connectivity in fuzzy graphs
    Prabhath, Aswathi
    Mathew, Sunil
    Mordeson, J. N.
    FUZZY SETS AND SYSTEMS, 2024, 482
  • [22] The generalized connectivity of complete bipartite graphs
    Li, Shasha
    Li, Wei
    Li, Xueliang
    ARS COMBINATORIA, 2012, 104 : 65 - 79
  • [23] Generalized Sum Connectivity Invariant of Graphs
    Seenuvasan, P.
    RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [24] Rainbow k-connectivity of Random Bipartite Graphs
    Chen, Xiao-lin
    Li, Xue-liang
    Lian, Hui-shu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 879 - 890
  • [25] Rainbow k-connectivity of Random Bipartite Graphs
    Xiao-lin Chen
    Xue-liang Li
    Hui-shu Lian
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 879 - 890
  • [26] Rainbow k-connectivity of Random Bipartite Graphs
    Xiao-lin CHEN
    Xue-liang LI
    Hui-shu LIAN
    Acta Mathematicae Applicatae Sinica, 2020, 36 (04) : 879 - 890
  • [27] Rainbow domination numbers of generalized Petersen graphs
    Gao, Zhipeng
    Lei, Hui
    Wang, Kui
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 382
  • [28] GENERALIZED CONNECTIVITY OF (n, k)-STAR GRAPHS
    Wei, Yunchao
    Chen, Fuguang
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2013, 24 (08) : 1235 - 1241
  • [29] On the minimum size of graphs with given generalized connectivity
    Zhao, Shu-Li
    Li, Hengzhe
    Chang, Jou-Ming
    DISCRETE APPLIED MATHEMATICS, 2024, 355 : 88 - 95
  • [30] Connectivity and other invariants of generalized products of graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (02) : 283 - 303