A comparison of dislocation cellular patterns generated in Inconel 718 alloy and pure Ni fabricated by laser powder bed fusion

被引:10
|
作者
He, Minglin [1 ,2 ]
Xiang, Ziting [1 ]
Yi, Jiang [1 ]
Ni, Yong [2 ]
Wang, Shuai [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser powder bed fusion; Inconel; 718; alloy; Pure Ni; Dislocation cellular pattern; Dislocation; CRYSTAL-GROWTH; HIGH-STRENGTH; MICROSTRUCTURE; STEEL; SUPERALLOY; EVOLUTION; DUCTILITY; ORIGIN;
D O I
10.1016/j.vacuum.2022.110974
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dislocation cellular pattern (DCP) plays an important role on the mechanical property of metals fabricated by laser powder bed fusion technique. Understanding the origin and evolution of the DCP is of critical importance to the selection of manufacturing parameters. However, the generation mechanism of DCP is not clear. By using multiscale characterization approaches, we investigated and compared the DCP in Inconel 718 alloy and pure Ni fabricated by laser powder bed fusion technique. In Inconel 718, the dislocations tended to multiply and be pinned along the solidified cellular dendrites boundaries. As the solidified cellular dendrites had a preferential growth direction of < 001 >, the DCP inherited this orientation and exhibited a three-dimensional rod-like shape. In contrast, the DCP in pure Ni was the same as the conventional dislocation cell generated by plastic defor-mation. Without constriction from solute atoms and precipitates, the DCP in Ni tended to recover and form low-angle grain boundaries. Our results suggested that the thermal stress induced by rapid heating/cooling during laser fabrication played a critical role on the generation of high-density dislocations, and the solute atoms influenced the geometry and morphology of the DCP.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Creep behaviour of inconel 718 processed by laser powder bed fusion
    Xu, Zhengkai
    Hyde, C. J.
    Tuck, C.
    Clare, A. T.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 256 : 13 - 24
  • [22] Laser powder bed fusion of Inconel 718 on 316 stainless steel
    Chen, Wei-Ying
    Zhang, Xuan
    Li, Meimei
    Xu, Ruqing
    Zhao, Cang
    Sun, Tao
    ADDITIVE MANUFACTURING, 2020, 36
  • [23] Investigation of hydrogen embrittlement properties of Ni-based alloy 718 fabricated via laser powder bed fusion
    Yoo, Jisung
    Kim, Selim
    Jo, Min Cheol
    Park, Hyungkwon
    Jung, Joong Eun
    Do, Jeonghyeon
    Yun, Dae Won
    Kim, In Soo
    Choi, Baig-Gyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (43) : 18892 - 18910
  • [24] Effect of powder reuse on tensile, compressive, and creep strength of Inconel 718 fabricated via laser powder bed fusion
    Bhowmik, Shubhrodev
    McWilliams, Brandon A.
    Knezevic, Marko
    MATERIALS CHARACTERIZATION, 2022, 190
  • [25] Spatter and oxide formation in laser powder bed fusion of Inconel 718
    Gasper, A. N. D.
    Szost, B.
    Wang, X.
    Johns, D.
    Sharma, S.
    Clare, A. T.
    Ashcroft, I. A.
    ADDITIVE MANUFACTURING, 2018, 24 : 446 - 456
  • [26] Fast neutron irradiation-induced hardening in Inconel 625 and Inconel 718 fabricated via laser powder bed fusion
    Andurkar, M.
    O'Donnell, V.
    Keya, T.
    Prorok, B. C.
    Gahl, J.
    Thompson, S. M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (02) : 1659 - 1670
  • [27] Experimental investigation of laser scan strategy on the microstructure and properties of Inconel 718 parts fabricated by laser powder bed fusion
    Ravichander, Bharath Bhushan
    Mamidi, Kiriti
    Rajendran, Vignesh
    Farhang, Behzad
    Ganesh-Ram, Aditya
    Hanumantha, Manjunath
    Moghaddam, Narges Shayesteh
    Amerinatanzi, Amirhesam
    MATERIALS CHARACTERIZATION, 2022, 186
  • [28] The precipitation behavior effect of δ and γ" phases on mechanical properties of laser powder bed fusion Inconel 718 alloy
    Cheng, Wenhao
    Sun, Yiming
    Ma, Rui
    Wang, Yajun
    Bai, Jie
    Xue, Linan
    Yang, Jin
    Liu, Hongbing
    Song, Xiaoguo
    Tan, Caiwang
    Yuan, Qinfeng
    MATERIALS CHARACTERIZATION, 2022, 194
  • [29] Influence of Heat Treatment on Fretting Wear Behavior of Laser Powder Bed Fusion Inconel 718 Alloy
    Sathisha, C. H.
    Ka, Harsha
    Arivu, Y.
    Pramod, S.
    Sridhar, M. R.
    Buravalla, Vidyashankar
    Kesavan, D.
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (11):
  • [30] Additive manufacturing of Inconel 718/CuCrZr multi-metallic materials fabricated by laser powder bed fusion
    Zhang, Lizheng
    Dong, Peng
    Zeng, Yong
    Yao, Haihua
    Chen, Jimin
    ADDITIVE MANUFACTURING, 2024, 92