Linguistic Representation by Fuzzy Formal Concept and Interval Type-2 Feature Selection

被引:1
|
作者
Cherif, Sahar [1 ]
Baklouti, Nesrine [1 ]
Alimi, Adel M. [1 ]
Snasel, Vaclav [2 ]
机构
[1] Natl Engn Sch Sfax, REGIM Lab REs Grp Intelligent Machines, Sfax, Tunisia
[2] Fac Elect Engn & Comp Sci, Dept Comp Sci, Ostrava, Czech Republic
来源
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016) | 2017年 / 557卷
关键词
Fuzzy formal concept; IT-2; FSs; Feature selection; Concept lattice; WORDS; LOGIC; SETS;
D O I
10.1007/978-3-319-53480-0_105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Natural language is always seen as a source of uncertainty and vagueness. Fuzzy logic (FL) is a powerful tool for representing and treating perceptions which are the inputs and outputs of a linguistic model. In fact, a linguistic representation is a methodology that moves from crisp measures to uncertain words or fuzzy concepts. This theory uses fuzzy sets to encode and represent linguistic concepts. In this paper, an interval type-2 fuzzy formal concept IT-2FFC is presented as a new approach for extracting knowledge in a linguistic model. The method represents a combination of two techniques: fuzzy formal concept (FFC) for visualizing data and interval type-2 fuzzy sets (IT-2FSs) for feature selection. The obtained results demonstrate that the method applied can help human to make subjective judgments and make decision in a knowledge model.
引用
收藏
页码:1071 / 1081
页数:11
相关论文
共 50 条
  • [41] On defuzzification of interval type-2 fuzzy sets
    Starczewski, Janusz T.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 333 - 340
  • [42] An Interval Type-2 Fuzzy Distribution Network
    Miller, Simon M.
    Popova, Viara
    John, Robert
    Gongora, Mario
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 697 - 702
  • [43] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [44] Interval Type-2 Fuzzy Logic Toolbox
    Castro, Juan R.
    Castillo, Oscar
    Martinez, Luis G.
    ENGINEERING LETTERS, 2007, 15 (01)
  • [45] An Entropy of Interval Type-2 Fuzzy Sets
    Zheng, Gao
    Yin, Shiwei
    MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 1999 - 2003
  • [46] Relational Type-2 Interval Fuzzy Systems
    Scherer, Rafal
    Starczewski, Janusz T.
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2010, 6067 : 360 - 368
  • [47] Implementing interval type-2 fuzzy processors
    Melgarejo, Miguel
    Pena-Reyes, Carlos A.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2007, 2 (01) : 63 - 71
  • [48] Interval type-2 fuzzy decision making
    Runkler, Thomas
    Coupland, Simon
    John, Robert
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 80 : 217 - 224
  • [49] On interval type-2 rough fuzzy sets
    Zhang, Zhiming
    KNOWLEDGE-BASED SYSTEMS, 2012, 35 : 1 - 13
  • [50] Interval Type-2 Fuzzy Capital Budgeting
    Sari, Irem Ucal
    Kahraman, Cengiz
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2015, 17 (04) : 635 - 646