Charged excitons in fractional quantum Hall regime

被引:0
|
作者
Byszewsk, M. [1 ]
Chwalisz-Pietka, B. [1 ]
Maude, D. K. [1 ]
Sadowski, M. L. [1 ]
Potemski, M. [1 ]
Saku, T. [2 ]
Hirayama, Y. [3 ,4 ,5 ]
Studenikin, S.
Austing, G. [6 ]
Sachrajda, A. S. [6 ]
Hawrylak, P. [6 ]
机构
[1] CNRS, Grenoble High Magnet Field Lab, F-38042 Grenoble, France
[2] NTT Corp, NTT Basic Res Lab, Atsugi, Kanagawa, Japan
[3] NTT Corp, NTT Basic Res Lab, Atsugi, Kanagawa, Japan
[4] JST JST, Atsugi, Kanagawa, Japan
[5] Tohoku Univ, Dept Phys, Sendai, Miyagi, Japan
[6] NRC, Inst Microstruct Sci, Ottawa, ON, Canada
来源
关键词
fractional quantum Hall effect; magneto-photoluminescence; exciton;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on photoluminescence experiments carried out at very low temperatures and with magnetic fields up to 28T performed on a high mobility two-dimensional electron gas GaAs/AIGaAs quantum well. Our experiments show that clear signatures of the v =1/3, 2/5, 3/7, 3/5, 2/3, 1 sequence of the FQHE states can also be easily visible even in raw magneto-photoluminescence spectra. Theoretical calculations of excitonic transitions suggest that an explanation of the red shift of emission energy at the Hall plateau boundary may be due to the appearance of additional free charged quasi-particles that bind to an exciton, forming a fractionally charged exciton whose emission energy is expected to be lower, in analogy to well known charged excitons in n-type semiconductors. The magnitude of the shift is a measure of the fractionally charged exciton binding energy. Emission in the insulating state of 2DEG at v = 1/3 is attributed to a neutral quasi-exciton whose complicated energy dispersion results in an emission doublet with its low energy line due to the recombination from excited excitonic states.
引用
收藏
页码:655 / +
页数:2
相关论文
共 50 条
  • [21] Nonlinear optics in the fractional quantum Hall regime
    Patrick Knüppel
    Sylvain Ravets
    Martin Kroner
    Stefan Fält
    Werner Wegscheider
    Atac Imamoglu
    Nature, 2019, 572 : 91 - 94
  • [22] RESONANT TUNNELING IN THE FRACTIONAL QUANTUM HALL REGIME
    CHAMON, CD
    WEN, XG
    PHYSICAL REVIEW LETTERS, 1993, 70 (17) : 2605 - 2608
  • [23] Edge reconstruction in the fractional quantum Hall regime
    Wan, X
    Rezayi, EH
    Yang, K
    PHYSICAL REVIEW B, 2003, 68 (12)
  • [24] Mesoscopic effects in the fractional quantum Hall regime
    Geller, MR
    Loss, D
    PHYSICA E, 1997, 1 (1-4): : 120 - 124
  • [25] Crystallization of levitons in the fractional quantum Hall regime
    Ronetti, Flavio
    Vannucci, Luca
    Ferraro, Dario
    Jonckheere, Thibaut
    Rech, Jerome
    Martin, Thierry
    Sassetti, Maura
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [26] Persistent Hall voltage and current in the fractional quantum Hall regime
    Kettemann, S
    PHYSICAL REVIEW B, 1997, 55 (04): : 2512 - 2522
  • [27] Hall resistance anomalies in the integer and fractional quantum Hall regime
    Peraticos, E.
    Kumar, S.
    Pepper, M.
    Siddiki, A.
    Farrer, I
    Ritchie, D.
    Jones, G.
    Griffiths, J.
    PHYSICAL REVIEW B, 2020, 102 (11)
  • [28] CONDUCTANCE THROUGH A QUANTUM DOT IN THE FRACTIONAL QUANTUM HALL REGIME
    KINARET, JM
    MEIR, YG
    WINGREEN, NS
    LEE, P
    WEN, XG
    PHYSICAL REVIEW B, 1992, 45 (16): : 9489 - 9492
  • [29] New quantum states in the fractional quantum Hall effect regime
    Pashitskii, EA
    LOW TEMPERATURE PHYSICS, 2005, 31 (02) : 171 - 178
  • [30] CONTINUUM EXCITONS IN THE FRACTIONAL-QUANTUM-HALL-EFFECT REGIME - STEPS IN THE FILLING-FACTOR DEPENDENCE OF THE ENERGY
    TATARINOVA, TV
    RASHBA, EI
    EFROS, AL
    PHYSICAL REVIEW B, 1994, 50 (23): : 17349 - 17356