High-performance porous lead/graphite composite electrode for bipolar lead-acid batteries

被引:11
|
作者
Lang, Xiaoshi [1 ,2 ]
Xiao, Yao [2 ,4 ]
Cai, Kedi [2 ,4 ]
Li, Lan [3 ]
Zhang, Qingguo [1 ,2 ]
Yang, Rui [2 ,4 ]
机构
[1] BOHAI Univ, Coll New Energy, Jinzhou 121007, Peoples R China
[2] BOHAI Univ, Liaoning Prov Res Ctr Engn Technol Super Capac, Jinzhou 121013, Peoples R China
[3] BOHAI Univ, Anal & Testing Ctr, Jinzhou 121013, Peoples R China
[4] BOHAI Univ, Coll Chem & Chem Engn, Jinzhou 121013, Peoples R China
基金
中国国家自然科学基金;
关键词
bipolar lead-acid battery; attached and porous lead; graphite composite electrode; thicker active material; electronic conduction; electrolyte diffusion; GRAPHENE; PLATES;
D O I
10.1002/er.3729
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In general, thicker active material bipolar electrode's specific capacity and cycle life are very poor owing to its low bonding strength between the active material and the substrate and the diffusion rate of the sulfuric acid electrolyte inside the active material. In this paper, we synthesize a novel attached and porous lead/graphite composite electrode for bipolar lead-acid battery and can effectively solve these problems. The graphite/polytetrafluoroethylene emulsion is employed to improve the bonding strength and conductivity and the porous can provide electrolyte diffusion channels. The specific capacities of 2-mm thick positive active material at 0.25, 0.5, 1 and 2C can attain 75.99, 58.98, 47.97, and 33.36mAhg(-1). The discharge voltage platform is also relatively high and no rapid decline with increasing discharge rate. Furthermore, after 80cycles, the specific capacity does not drop evidently. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:1504 / 1509
页数:6
相关论文
共 50 条
  • [41] Lead-Carbon Electrode with Inhibitor of Sulfation for Lead-Acid Batteries Operating in the HRPSoC Duty
    Pavlov, D.
    Nikolov, P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) : A1215 - A1225
  • [42] Effect of silica soot on behaviour of negative electrode in lead-acid batteries
    Wu, L
    Chen, HY
    Jiang, X
    JOURNAL OF POWER SOURCES, 2002, 107 (02) : 162 - 166
  • [43] Optimized lead-acid grid architectures for automotive lead-acid batteries: An electrochemical analysis
    Calborean, Adrian
    Murariu, Teodora
    Morari, Cristian
    ELECTROCHIMICA ACTA, 2021, 372
  • [45] Intermittent discharging for lead-acid batteries
    Ng, K. S.
    Moo, C. S.
    Lin, Y. C.
    Hsieh, Y. C.
    Tsai, Y. L.
    2007 POWER CONVERSION CONFERENCE - NAGOYA, VOLS 1-3, 2007, : 194 - +
  • [46] NEOLAB: A Scilab tool to simulate the Negative Electrode of Lead-Acid Batteries
    Cugnet, Mikael
    Gallois, Florian
    Kirchev, Angel
    Dutykh, Denys
    SOFTWAREX, 2023, 22
  • [47] Application challenges for lead-acid batteries
    Szymborski, J
    TELESCON 97, BUDAPEST - THE SECOND INTERNATIONAL TELECOMMUNICATIONS ENERGY SPECIAL CONFERENCE, 1997, : 341 - 348
  • [48] PROPER CARE OF LEAD-ACID BATTERIES
    TODD, M
    SAFETY MAINTENANCE, 1968, 136 (02): : 43 - &
  • [49] Lead-acid batteries with foam grids
    Tabaatabaai, S. M.
    Rahmanifar, M. S.
    Mousavi, S. A.
    Shekofteh, S.
    Khonsari, Jh.
    Oweisi, A.
    Hejabi, M.
    Tabrizi, H.
    Shirzadi, S.
    Cheraghi, B.
    JOURNAL OF POWER SOURCES, 2006, 158 (02) : 879 - 884
  • [50] Simulation of recombinant lead-acid batteries
    Newman, J
    Tiedemann, W
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) : 3081 - 3091