Random Tilings and Markov Chains for Interlacing Particles

被引:0
|
作者
Borodin, A. [1 ]
Ferrari, P. L. [2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Markov chain; random tiling; shuffing algorithm; Schur process; LARGE TIME ASYMPTOTICS; DOMINO TILINGS; 6-VERTEX MODEL; GROWTH-MODELS; STATISTICS; BOUNDARY; PNG;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We explain the relation between certain random tiling models and interacting particle systems belonging to the anisotropic KPZ (Kardar - Parisi - Zhang) universality class in 2 + 1-dimensions. The link between these two a priori disjoint sets of models is a consequence of the presence of shuffing algorithms that generate random tilings under consideration. To see the precise connection, we represent both a random tiling and the corresponding particle system through a set of non-intersecting lines, whose dynamics is induced by the shuffing algorithm or the particle dynamics. The resulting class of measures on line ensembles also fits into the framework of the Schur processes.
引用
收藏
页码:419 / 451
页数:33
相关论文
共 50 条
  • [41] Annotated bibliography of perfectly random sampling with Markov chains
    Wilson, DB
    MICROSURVEYS IN DISCRETE PROBABILITY, 1998, 41 : 209 - 220
  • [42] ON MARKOV CHAINS IN SPACE-TIME RANDOM ENVIRONMENTS
    胡迪鹤
    胡晓予
    Acta Mathematica Scientia, 2009, 29 (01) : 1 - 10
  • [43] ON RANDOM TOPOLOGICAL MARKOV CHAINS WITH BIG IMAGES AND PREIMAGES
    Stadlbauer, Manuel
    STOCHASTICS AND DYNAMICS, 2010, 10 (01) : 77 - 95
  • [44] Random quantum maps and their associated quantum Markov chains
    Maysam Maysami Sadr
    Monireh Barzegar Ganji
    Positivity, 2023, 27
  • [45] Open Quantum Random Walks and Quantum Markov Chains
    Dhahri, A.
    Mukhamedov, F.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (02) : 137 - 142
  • [46] Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields
    Wu, H.
    Noe, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1659 - 1667
  • [47] Markov interlacing property for perfect splines
    Bojanov, B
    JOURNAL OF APPROXIMATION THEORY, 1999, 100 (01) : 183 - 201
  • [48] Markov interlacing property for exponential polynomials
    Milev, Lozko
    Naidenov, Nikola
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 669 - 676
  • [49] Markov Field Types and Tilings
    Baryshnikov, Yuliy
    Duda, Jaroslaw
    Szpankowski, Wojciech
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2639 - 2643
  • [50] Discontinuity-adaptive de-interlacing scheme using markov random field model
    Li, Min
    Nguyen, Truong
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 393 - +