Radio Number for Generalized Petersen Graphs <inline-formula> <tex-math notation="LaTeX">$P(n,2)$ </tex-math></inline-formula>

被引:0
|
作者
Zhang, Feige [1 ]
Nazeer, Saima [2 ]
Habib, Mustafa [3 ]
Zia, Tariq Javed [4 ]
Ren, Zhendong [5 ]
机构
[1] Baoji Univ Arts & Sci, Sch Electron & Elect Engn, Baoji 721016, Peoples R China
[2] Lahore Coll Women Univ, Dept Math, Lahore 54000, Pakistan
[3] Univ Engn & Technol Lahore, Dept Math, Lahore 54890, Pakistan
[4] COMSATS Univ Islamabad Lahore, Dept Math, Lahore 54000, Pakistan
[5] Shaanxi Lingyun Elect Grp Co Ltd, Baoji 721000, Pakistan
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Labeling; Radio transmitters; Interference; Task analysis; Two dimensional displays; Channel allocation; STEM; Diameter; radio number; generalized Petersen graph; LABELING GRAPHS;
D O I
10.1109/ACCESS.2019.2943835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let $G$ be a connected graph and $d(\mu,\omega)$ be the distance between any two vertices of $G$ . The diameter of $G$ is denoted by $diam(G)$ and is equal to $\max \{d(\mu,\omega); \\ \mu,\omega \in G\}$ . The radio labeling (RL) for the graph $G$ is an injective function $\digamma:V(G)\rightarrow N\cup \{0\}$ such that for any pair of vertices $\mu $ and $\omega \,\,|\digamma (\mu)-\digamma (\omega)|\geq diam(G)-d(\mu,\omega)+1$ . The span of radio labeling is the largest number in $\digamma (V)$ . The radio number of $G$ , denoted by $rn(G)$ is the minimum span over all radio labeling of $G$ . In this paper, we determine radio number for the generalized Petersen graphs, $P(n,2)$ , $n=4k+2$ . Further the lower bound of radio number for $P(n,2)$ when $n=4k$ is determined.
引用
收藏
页码:142000 / 142008
页数:9
相关论文
共 50 条