Dynamics of a stochastic SIR epidemic model with saturated incidence

被引:24
|
作者
Liu, Qun [1 ]
Chen, Qingmei [1 ]
机构
[1] Yulin Normal Univ, Sch Math & Informat Sci, Guangxi Univ Key Lab Complex Syst Optimizat & Big, Yulin 537000, Guangxi, Peoples R China
关键词
Persistence in the mean; Extinction; Stationary distribution; Ito's formula; Lyapunov functions; NONLINEAR INCIDENCE; GLOBAL STABILITY; STATIONARY DISTRIBUTION; PERTURBED SIR; EXTINCTION; BEHAVIOR; PERTURBATIONS; VACCINATION; THRESHOLD; SYSTEM;
D O I
10.1016/j.amc.2016.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the dynamics of a stochastic SIR epidemic model with saturated incidence is investigated. Firstly, we prove that the system has a unique global positive solution with any positive initial value. Then we verify that random effect may lead the disease to extinction under a simple condition. Thirdly, we establish a sufficient condition for persistence in the mean of the disease. Moreover, we show that there is a stationary distribution to the stochastic system under certain parametric restrictions. Finally, some numerical simulations are carried out to confirm the analytical results. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 50 条
  • [21] Stochastic permanence of an epidemic model with a saturated incidence rate
    Hussain, Ghulam
    Khan, Amir
    Zahri, Mostafa
    Zaman, Gul
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [22] The threshold of a stochastic SIRS epidemic model with saturated incidence
    Zhao, Yanan
    Jiang, Daqing
    APPLIED MATHEMATICS LETTERS, 2014, 34 : 90 - 93
  • [23] Dynamics of a multigroup SIR epidemic model with stochastic perturbation
    Ji, Chunyan
    Jiang, Daqing
    Yang, Qingshan
    Shi, Ningzhong
    AUTOMATICA, 2012, 48 (01) : 121 - 131
  • [24] Dynamics of an SEIR epidemic model with saturated incidence rate including stochastic in-fluence
    Kumar, G. Ranjith
    Ramesh, K.
    Nisar, Kottakkaran Sooppy
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2024, 12 (02): : 350 - 360
  • [25] Wave propagation of a discrete SIR epidemic model with a saturated incidence rate
    Zhang, Qiu
    Wu, Shi-Liang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2019, 12 (03)
  • [26] Stability analysis in a delayed SIR epidemic model with a saturated incidence rate
    Kaddar, A.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (03): : 299 - 306
  • [27] Global analysis of an SIR epidemic model with infection age and saturated incidence
    Chen, Yuming
    Zou, Shaofen
    Yang, Junyuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 16 - 31
  • [28] Qualitative Analysis of Delayed SIR Epidemic Model with a Saturated Incidence Rate
    Rihan, Fathalla A.
    Anwar, M. Naim
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [29] Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates
    Liu, Zhenjie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1286 - 1299
  • [30] The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence
    Zhao, Dianli
    Zhang, Tiansi
    Yuan, Sanling
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 443 : 372 - 379