Tangible UI by Object and Material Classification with Radar

被引:3
|
作者
Yeo, Hui-Shyong [1 ]
Ens, Barrett [2 ]
Quigley, Aaron [1 ]
机构
[1] Univ St Andrews, St Andrews, Fife, Scotland
[2] Univ South Australia, Adelaide, SA, Australia
关键词
Radar sensing; tangible interaction; object recognition;
D O I
10.1145/3132818.3132824
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Radar signals penetrate, scatter, absorb and reflect energy into proximate objects and ground penetrating and aerial radar systems are well established. We describe a highly accurate system based on a combination of a monostatic radar (Google Soli), supervised machine learning to support object and material classification based UIs. Based on RadarCat techniques, we explore the development of tangible user interfaces without modification of the objects or complex infrastructures. This affords new forms of interaction with digital devices, proximate objects and micro-gestures.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Object classification on raw radar data using convolutional neural networks
    Han, Heejae
    Kim, Jeonghwan
    Park, Junyoung
    Lee, Yujin
    Jo, Hyunwoo
    Park, Yonghyeon
    Matson, Eric T.
    Park, Seongha
    2019 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2019,
  • [22] Autonomous wireless radar sensor mote for target material classification
    Khan, Muhammad M. R.
    Iftekharuddin, Khan M.
    McCracken, Ernest
    Islam, Khandakar
    Bhurtel, Sushil
    Wang, Lan
    Kozma, Robert
    DIGITAL SIGNAL PROCESSING, 2013, 23 (03) : 722 - 735
  • [23] Space object identification and classification from hyperspectral material analysis
    Massimiliano Vasile
    Lewis Walker
    Andrew Campbell
    Simão Marto
    Paul Murray
    Stephen Marshall
    Vasili Savitski
    Scientific Reports, 14
  • [24] Space object identification and classification from hyperspectral material analysis
    Vasile, Massimiliano
    Walker, Lewis
    Campbell, Andrew
    Marto, Simao
    Murray, Paul
    Marshall, Stephen
    Savitski, Vasili
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [25] Tangible Navigation and Object Manipulation in Virtual Environments
    Wu, Andy
    Reilly, Derek
    Tang, Anthony
    Mazalekl, Ali
    TEI 2011: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON TANGIBLE EMBEDDED AND EMBODIED INTERACTION, 2011, : 37 - 44
  • [26] Exploring Biofoam as a Material for Tangible Interaction
    Vasquez, Eldy S. Lazaro
    Ofer, Netta
    Wu, Shanel
    West, Mary Etta
    Alistar, Mirela
    Devendorf, Laura
    PROCEEDINGS OF THE 2022 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2022, 2022, : 1525 - 1539
  • [27] Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra
    Patel, Kanil
    Beluch, William
    Rambach, Kilian
    Cozma, Adriana-Eliza
    Pfeiffer, Michael
    Yang, Bin
    2021 IEEE RADAR CONFERENCE (RADARCONF21): RADAR ON THE MOVE, 2021,
  • [28] A Framework for Object Classification via Camera-Radar Fusion with Automated Labeling
    Samuktha, V
    Abhilash, S.
    Kumar, Nitish
    Rajalakshmi, P.
    2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024, 2024,
  • [29] Object Tracking and Classification Using Millimeter-Wave Radar Based on LSTM
    Akita, Tokihiko
    Mita, Seiichi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 1110 - 1115
  • [30] RSA-fusion: radar spatial attention fusion for object detection and classification
    Feng B.
    Li B.
    Wang S.
    Ouyang N.
    Dai W.
    Multimedia Tools and Applications, 2025, 84 (8) : 4789 - 4808