Tangible UI by Object and Material Classification with Radar

被引:3
|
作者
Yeo, Hui-Shyong [1 ]
Ens, Barrett [2 ]
Quigley, Aaron [1 ]
机构
[1] Univ St Andrews, St Andrews, Fife, Scotland
[2] Univ South Australia, Adelaide, SA, Australia
关键词
Radar sensing; tangible interaction; object recognition;
D O I
10.1145/3132818.3132824
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Radar signals penetrate, scatter, absorb and reflect energy into proximate objects and ground penetrating and aerial radar systems are well established. We describe a highly accurate system based on a combination of a monostatic radar (Google Soli), supervised machine learning to support object and material classification based UIs. Based on RadarCat techniques, we explore the development of tangible user interfaces without modification of the objects or complex infrastructures. This affords new forms of interaction with digital devices, proximate objects and micro-gestures.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Experiential Tangible UI for Controlling Lighting
    Lappalainen, Tuomas
    Korpela, Johanna
    Colley, Ashley
    Hakkila, Lonna
    UBICOMP'16 ADJUNCT: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2016, : 317 - 320
  • [2] Spatial object classification by radar measurements
    Morio, Jerome
    Muller, Florent
    AEROSPACE SCIENCE AND TECHNOLOGY, 2010, 14 (04) : 259 - 265
  • [3] Object Classification in Radar Using Ensemble Methods
    Lombacher, Jakob
    Hahn, Markus
    Dickmann, Jurgen
    Woehler, Christian
    2017 IEEE MTT-S INTERNATIONAL CONFERENCE ON MICROWAVES FOR INTELLIGENT MOBILITY (ICMIM), 2017, : 87 - 90
  • [4] Radar-Vision Fusion for Object Classification
    Ji, Zhengping
    Prokhorov, Danil
    2008 WORLD AUTOMATION CONGRESS PROCEEDINGS, VOLS 1-3, 2008, : 375 - 380
  • [5] Buried object classification using holographic radar
    Windsor, C.
    Capineri, L.
    Bechtel, T. D.
    INSIGHT, 2012, 54 (06) : 331 - 337
  • [6] Towards Tangible and Distributed UI for Cognitively Impaired People
    Galiev, Ruzalin
    Rupprecht, Dominik
    Bomsdorf, Birgit
    UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION: DESIGNING NOVEL INTERACTIONS, PT II, 2017, 10278 : 283 - 300
  • [7] Java UI : Eeffects for controlling UI object access
    Gordon, Colin S.
    Dietl, Werner
    Ernst, Michael D.
    Grossman, Dan
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, 7920 LNCS : 179 - 204
  • [8] DEEPREFLECS: Deep Learning for Automotive Object Classification with Radar Reflections
    Ulrich, Michael
    Glaeser, Claudius
    Timm, Fabian
    2021 IEEE RADAR CONFERENCE (RADARCONF21): RADAR ON THE MOVE, 2021,
  • [9] Classification of flying object based on radar data using hybrid
    Mandal, Priti
    Roy, Lakshi Prosad
    Das, Santos Kumar
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 107
  • [10] Performance Comparison of SAC Methods for Radar Dynamic Object Classification
    Park, Yeong Sang
    Choi, Dooseop
    Min, Kyoung-Wook
    INTELLIGENT AUTONOMOUS SYSTEMS 18, VOL 2, IAS18-2023, 2024, 794 : 55 - 64