A COMPLEX-VALUED CONVOLUTIONAL NEURAL NETWORK WITH DIFFERENT ACTIVATION FUNCTIONS IN POLARIMETRIC SAR IMAGE CLASSIFICATION

被引:3
|
作者
Zhang, Yun [1 ]
Hua, Qinglong [1 ]
Xu, Dan [1 ]
Li, Hongbo [1 ]
Mu, HuiLin [1 ]
机构
[1] Harbin Inst Technol, Sch Elect Informat Engn, Harbin, Peoples R China
来源
2019 INTERNATIONAL RADAR CONFERENCE (RADAR2019) | 2019年
基金
中国国家自然科学基金;
关键词
Complex-valued convolutional neural network (CV-CNN); optimization algorithm; activation function; synthetic aperture radar (SAR); terrain classification; deep learning;
D O I
10.1109/RADAR41533.2019.171298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is well known that the activation function and the gradient descent optimization algorithm have a great influence on convolutional neural network (CNN). Based on the Adam optimization algorithm, this paper proposes a CvAdam optimization algorithm suitable for complex-valued convolutional neural network (CV-CNN), and then in the typical polarization SAR image classification task, Adam and CvAdam were compared using four different activation functions of sigmoid, tanh, Leakey-ReLU and ELU. Experiments on the benchmark dataset of Oberpfaffenhofen show that CvAdam performs better than Adam in both convergence speed and accuracy, no matter which activation function is used.
引用
收藏
页码:749 / 752
页数:4
相关论文
共 50 条
  • [21] POLSAR IMAGE CLASSIFICATION VIA COMPLEX-VALUED CONVOLUTIONAL NEURAL NETWORK COMBINING MEASURED DATA AND ARTIFICIAL FEATURES
    Qin, Xianxiang
    Hu, Tao
    Zou, Huanxin
    Yu, Wangsheng
    Wang, Peng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3209 - 3212
  • [22] PolSAR Image Classification with Active Complex-Valued Convolutional-Wavelet Neural Network and Markov Random Fields
    Liu, Lu
    Li, Yongxiang
    REMOTE SENSING, 2024, 16 (06)
  • [23] Multiscale Complex-Valued Feature Attention Convolutional Neural Network for SAR Automatic Target Recognition
    Zhou, Xiaoqian
    Luo, Cai
    Ren, Peng
    Zhang, Bin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2052 - 2066
  • [24] Complex-Valued Neural Networks With Nonparametric Activation Functions
    Scardapane, Simone
    Van Vaerenbergh, Steven
    Hussain, Amir
    Uncini, Aurelio
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2020, 4 (02): : 140 - 150
  • [25] COMPLEX-VALUED NEURAL NETWORKS FOR POLARIMETRIC SAR SEGMENTATION USING PAULI REPRESENTATION
    Barrachina, J. A.
    Ren, C.
    Morisseau, C.
    Vieillard, G.
    Ovarlez, J. -P.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4984 - 4987
  • [26] COMPLEX-VALUED VS. REAL-VALUED CONVOLUTIONAL NEURAL NETWORK FOR POLSAR DATA CLASSIFICATION
    Asiyabi, Reza Mohammadi
    Datcu, Mihai
    Nies, Holger
    Anghel, Andrei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 421 - 424
  • [27] Atmospheric turbulence removal with complex-valued convolutional neural network
    Anantrasirichai, Nantheera
    PATTERN RECOGNITION LETTERS, 2023, 171 : 69 - 75
  • [28] Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks - Application on Polarimetric SAR Image Segmentation
    Barrachina, Jose Agustin
    Ren, Chengfang
    Morisseau, Christele
    Vieillard, Gilles
    Ovarlez, Jean-Philippe
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2023, 95 (01): : 57 - 66
  • [29] Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks - Application on Polarimetric SAR Image Segmentation
    José Agustín Barrachina
    Chengfang Ren
    Christèle Morisseau
    Gilles Vieillard
    Jean-Philippe Ovarlez
    Journal of Signal Processing Systems, 2023, 95 : 57 - 66
  • [30] Fourier Transform-Based Image Classification Using Complex-Valued Convolutional Neural Networks
    Popa, Calin-Adrian
    Cernazanu-Glavan, Cosmin
    ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 300 - 309