Colouring cubic graphs by small Steiner triple systems

被引:2
|
作者
Pal, David
Skoviera, Martin
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[2] Comenius Univ, Dept Comp Sci, Fac Math Phys & Informat, Bratislava 84248, Slovakia
关键词
cubic graph; edge-colouring; Steiner triple system;
D O I
10.1007/s00373-007-0696-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Steiner triple system S, we say that a cubic graph G is S-colourable if its edges can be coloured by points of S in such way that the colours of any three edges meeting at a vertex form a triple of S. We prove that there is Steiner triple system U of order 21 which is universal in the sense that every simple cubic graph is U-colourable. This improves the result of Grannell et al. [J. Graph Theory 46 (2004), 15-24] who found a similar system of order 381. On the other hand, it is known that any universal Steiner triple system must have order at least 13, and it has been conjectured that this bound is sharp (Holroyd and. Skoviera [J. Combin. Theory Ser. B 91 (2004), 57-66]).
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [41] Tricyclic Steiner Triple Systems
    Rebecca C. Calahan
    Robert B. Gardner
    Quan D. Tran
    Graphs and Combinatorics, 2010, 26 : 31 - 42
  • [42] NONISOMORPHIC STEINER TRIPLE SYSTEMS
    WILSON, RM
    MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (04) : 303 - 313
  • [43] AUTOMORPHISMS OF STEINER TRIPLE SYSTEMS
    HALL, M
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) : 460 - 472
  • [44] Extensions of Steiner Triple Systems
    Falcone, Giovanni
    Figula, Agota
    Galici, Mario
    JOURNAL OF COMBINATORIAL DESIGNS, 2025, 33 (03) : 94 - 108
  • [45] ON STEINER AND SIMILAR TRIPLE SYSTEMS
    HILTON, AJW
    MATHEMATICA SCANDINAVICA, 1969, 24 (02) : 208 - &
  • [46] Extensions of Steiner Triple Systems
    Falcone, Giovanni
    Figula, Agota
    Galici, Mario
    Journal of Combinatorial Designs, 33 (03): : 94 - 108
  • [47] Configurations in Steiner triple systems
    Grannell, MJ
    Griggs, TS
    COMBINATORIAL DESIGNS AND THEIR APPLICATIONS, 1999, 403 : 103 - 126
  • [48] STEINER TRIPLE AND RELATED SYSTEMS
    HANANI, H
    SIAM REVIEW, 1968, 10 (02) : 267 - &
  • [49] Balanced Steiner triple systems
    Colbourn, C
    Haddad, L
    Linek, V
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (02) : 292 - 302
  • [50] On the number of resolvable Steiner triple systems of small 3-rank
    Shi, Minjia
    Xu, Li
    Krotov, Denis S.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (06) : 1037 - 1046