Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD

被引:75
|
作者
Dose, B. [1 ,2 ]
Rahimi, H. [1 ,2 ]
Herraez, I [3 ]
Stoevesandt, B. [2 ]
Peinke, J. [1 ,2 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, ForWind, D-26129 Oldenburg, Germany
[2] Fraunhofer IWES, D-26129 Oldenburg, Germany
[3] Univ Appl Sci Emden Leer, Fac Technol, D-26723 Emden, Germany
关键词
Computational fluid dynamics (CFD); Fluid-structure interaction (FSI); CFD-CSD coupling; NREL; 5; MW; OpenFOAM; Wind turbine simulation;
D O I
10.1016/j.renene.2018.05.064
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a fluid-structure coupled simulation tool for high-fidelity simulations of wind turbine rotors. Coupling the open source Computational Fluid Dynamics (CFD) code OpenFOAM and the inhouse structural solver BeamFOAM, the developed tool allows the analysis of flexible wind turbines blades by means of CFD without a significant increase in computational costs. To demonstrate the capabilities of the coupled solver, the aero-elastic response of the NREL 5 MW reference wind turbine is computed for various conditions and specific results are compared to findings of other authors. The solver framework is then used to investigate the effect of blade deformations on aerodynamic key parameters such as power, thrust and sectional forces. It is shown, that the structural deformations have a clear influence on the aerodynamic rotor performance. Especially for the case of yawed inflow, significant implications can be observed in terms of loads and local induction factors. Compared to the fluid structure coupled framework, the rigid CFD solver underpredicts the forces acting on the blades for most of the cases. Consequently, the presented results are expected to contribute to improve the correction models used in aerodynamic models of lower fidelity like those based on the Blade Element Momentum theory. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:591 / 605
页数:15
相关论文
共 50 条
  • [21] Simulations of Fluid-Structure Interaction of a Wind Turbine
    Zheng, S.
    Chua, L. P.
    Zhao, Y.
    FLUID-STRUCTURE-SOUND INTERACTIONS AND CONTROL, 2016, : 407 - 413
  • [23] Numerical Investigation of Aerodynamic Performances for NREL 5-MW Offshore Wind Turbine
    Zhang, Qiqing
    Wang, Xiuling
    WIND, 2023, 3 (02): : 191 - 212
  • [24] Numerical investigation of modeling frameworks and geometric approximations on NREL 5 MW wind turbine
    Siddiqui, M. Salman
    Rasheed, Adil
    Tabib, Mandar
    Kvamsdal, Trond
    RENEWABLE ENERGY, 2019, 132 : 1058 - 1075
  • [25] NREL-5MW Wind Turbine Noise Prediction by FWH-LES
    Bernardi, Claudio
    Porcacchia, Federico
    Testa, Claudio
    De Palma, Pietro
    Leonardi, Stefano
    Cherubini, Stefania
    INTERNATIONAL JOURNAL OF TURBOMACHINERY PROPULSION AND POWER, 2023, 8 (04)
  • [26] Simulation of the fluid-structure interaction of a floating wind turbine
    Wiegard, Bjarne
    Radtke, Lars
    Koenig, Marcel
    Abdel-Maksoud, Moustafa
    Duester, Alexander
    SHIPS AND OFFSHORE STRUCTURES, 2019, 14 (sup1) : S207 - S218
  • [27] Fluid-Structure Analysis of airfoils on the small wind turbine
    Qiao, Limin
    Gu, Rui
    Feng, Feng
    Liu, Xueshan
    Yang, Yingjun
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 613 - +
  • [28] Fluid-Structure Interaction Model of a Wind Turbine Blade
    Abu Raihan, Gazi
    Chakravarty, Uttam K.
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 4, 2023,
  • [29] Modal analysis on fluid-structure interaction of MW-level vertical axis wind turbine tower
    1600, International Frequency Sensor Association (171):
  • [30] Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes
    Yu, Ziying
    Zheng, Xing
    Ma, Qingwei
    APPLIED SCIENCES-BASEL, 2018, 8 (03):