Accelerating the Conjugate Gradient Algorithm with GPUs in CFD Simulations

被引:1
|
作者
Anzt, Hartwig [1 ]
Baboulin, Marc [2 ]
Dongarra, Jack [1 ]
Fournier, Yvan [3 ]
Hulsemann, Frank [3 ]
Khabou, Amal [2 ]
Wang, Yushan [2 ]
机构
[1] Univ Tennessee, Innovat Comp Lab, Knoxville, TN USA
[2] Univ Paris 11, Lab Rech Informat, Orsay, France
[3] EDF R&D, Clamart, France
关键词
D O I
10.1007/978-3-319-61982-8_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper illustrates how GPU computing can be used to accelerate computational fluid dynamics (CFD) simulations. For sparse linear systems arising from finite volume discretization, we evaluate and optimize the performance of Conjugate Gradient (CG) routines designed for manycore accelerators and compare against an industrial CPU-based implementation. We also investigate how the recent advances in preconditioning, such as iterative Incomplete Cholesky (IC, as symmetric case of ILU) preconditioning, match the requirements for solving real world problems.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [31] Adaptive optimization modeling of preconditioned conjugate gradient on Multi-GPUs
    Gao J.
    Wang Y.
    Wang J.
    Liang R.
    ACM Transactions on Parallel Computing, 2016, 3 (03) : 1 - 33
  • [32] Test Harness on a Preconditioned Conjugate Gradient Solver on GPUs: An Efficiency Analysis
    Rodrigues, A. Wendell de O.
    Chevallier, Loic
    Le Menach, Yvonnick
    Guyomarch, Frederic
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (05) : 1729 - 1732
  • [33] Accelerating Radiosity on GPUs
    Shcherbakov, Alexandr
    Vladimir, Frolov
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2702 : 99 - 105
  • [34] Accelerating SSL with GPUs
    Jang, Keon
    Han, Sangjin
    Han, Seungyeop
    Moon, Sue
    Park, KyoungSoo
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2011, 41 (01) : 135 - 136
  • [35] Left-Preconditioned Communication-Avoiding Conjugate Gradient Methods for Multiphase CFD Simulations on the K Computer
    Mayumi, Akie
    Idomura, Yasuhiro
    Ina, Takuya
    Yamada, Susumu
    Imamura, Toshiyuki
    PROCEEDINGS OF SCALA 2016: 7TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE-SCALE SYSTEMS, 2016, : 17 - 24
  • [36] Accelerating AUTODOCK4 with GPUs and Gradient-Based Local Search
    Santos-Martins, Diogo
    Solis-Vasquez, Leonardo
    Tillack, Andreas F.
    Sanner, Michel F.
    Koch, Andreas
    Forli, Stefano
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (02) : 1060 - 1073
  • [37] Accelerating SSL with GPUs
    Jang, Keon
    Han, Sangjin
    Han, Seungyeop
    Moon, Sue
    Park, KyoungSoo
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2010, 40 (04) : 437 - 438
  • [38] Accelerating agent-based demand-responsive transport simulations with GPUs
    Saprykin, Aleksandr
    Chokani, Ndaona
    Abhari, Reza S.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 131 : 43 - 58
  • [39] NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs
    Ben-Shalom, Roy
    Ladd, Alexander
    Artherya, Nikhil S.
    Cross, Christopher
    Kim, Kyung Geun
    Sanghevi, Hersh
    Korngreen, Alon
    Bouchard, Kristofer E.
    Bender, Kevin J.
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 366
  • [40] A Review on accelerating scientific computations using the Conjugate Gradient Method
    Debnath, Shreyasee
    Tamuli, Manashwi
    Ray, Ashok
    Trivedi, Gaurav
    2015 INTERNATIONAL CONFERENCE ON ELECTRONIC DESIGN, COMPUTER NETWORKS & AUTOMATED VERIFICATION (EDCAV), 2015, : 150 - 153