A new class of copula regression models for modelling multivariate heavy-tailed data

被引:4
|
作者
Li, Zhengxiao [1 ]
Beirlant, Jan [2 ,3 ]
Yang, Liang [4 ]
机构
[1] Univ Int Business & Econ, Sch Insurance & Econ, Beijing, Peoples R China
[2] Katholieke Univ Leuven, Dept Math, LStat & LRisk, Leuven, Belgium
[3] Univ Free State, Dept Math Stat & Actuarial Sci, Bloemfontein, South Africa
[4] Southwestern Univ Finance & Econ, Sch Finance, Chengdu, Peoples R China
来源
INSURANCE MATHEMATICS & ECONOMICS | 2022年 / 104卷
基金
中国国家自然科学基金;
关键词
MGL copula; MGB2; copula; Exchangeable and asymmetric dependency; Extreme-value copula; Copula regression; DEPENDENCE; DISTRIBUTIONS; CONSTRUCTIONS;
D O I
10.1016/j.insmatheco.2022.02.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
A new class of copulas, termed the MGL copula class, is introduced. The new copula originates from extracting the dependence function of the multivariate generalized log-Moyal-gamma distribution whose marginals follow the univariate generalized log-Moyal-gamma (GLMGA) distribution as introduced in Li et al. (2021). The MGL copula can capture nonelliptical, exchangeable, and asymmetric dependencies among marginal coordinates and provides a simple formulation for regression applications. We discuss the probabilistic characteristics of MGL copula and obtain the corresponding extreme-value copula, named the MGL-EV copula. While the survival MGL copula can be also regarded as a special case of the MGB2 copula from Yang et al. (2011), we show that the proposed model is effective in regression modelling of dependence structures. Next to a simulation study, we propose two applications illustrating the usefulness of the proposed model. This method is also implemented in a user-friendly R package: rMGLReg. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:243 / 261
页数:19
相关论文
共 50 条
  • [31] Asymptotic independence and support detection techniques for heavy-tailed multivariate data
    Lehtomaa, Jaakko
    Resnick, Sidney, I
    INSURANCE MATHEMATICS & ECONOMICS, 2020, 93 : 262 - 277
  • [32] EXTREME CONDITIONAL EXPECTILE ESTIMATION IN HEAVY-TAILED HETEROSCEDASTIC REGRESSION MODELS
    Girard, Stephane
    Stupfler, Gilles
    Usseglio-Carleve, Antoine
    ANNALS OF STATISTICS, 2021, 49 (06): : 3358 - 3382
  • [33] Modelling Insurance Losses with a New Family of Heavy-Tailed Distributions
    Arif, Muhammad
    Khan, Dost Muhammad
    Khosa, Saima Khan
    Aamir, Muhammad
    Aslam, Adnan
    Ahmad, Zubair
    Gao, Wei
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 537 - 550
  • [34] An adaptive linear regression approach for modeling heavy-tailed longitudinal data
    Gad, Ahmed M.
    Ibrahim, Wafaa I. M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (05) : 1181 - 1197
  • [35] On diagnostics in multivariate measurement error models under asymmetric heavy-tailed distributions
    Zeller, Camila B.
    Carvalho, Rignaldo R.
    Lachos, Victor H.
    STATISTICAL PAPERS, 2012, 53 (03) : 665 - 683
  • [36] On diagnostics in multivariate measurement error models under asymmetric heavy-tailed distributions
    Camila B. Zeller
    Rignaldo R. Carvalho
    Victor H. Lachos
    Statistical Papers, 2012, 53 : 665 - 683
  • [37] Heavy-tailed Linear Bandit with Huber Regression
    Kang, Minhyun
    Kim, Gi-Soo
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1027 - 1036
  • [38] CAUSAL DISCOVERY IN HEAVY-TAILED MODELS
    Gnecco, Nicola
    Meinshausen, Nicolai
    Peters, Jonas
    Engelke, Sebastian
    ANNALS OF STATISTICS, 2021, 49 (03): : 1755 - 1778
  • [39] Heavy-tailed configuration models at criticality
    Dhara, Souvik
    van der Hofstad, Remco
    van Leeuwaarden, Johan S. H.
    Sen, Sanchayan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 1515 - 1558
  • [40] Graphical Models in Heavy-Tailed Markets
    Cardoso, Jose Vinicius de M.
    Ying, Jiaxi
    Palomar, Daniel P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34