Exact (exponential) algorithms for the dominating set problem

被引:0
|
作者
Fomin, FV [1 ]
Kratsch, D
Woeginger, GJ
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Univ Metz, LITA, F-57045 Metz 01, France
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We design fast exact algorithms for the problem of computing a minimum dominating set in undirected graphs. Since this problem is NP-hard, it comes with no big surprise that all our time complexities are exponential in the number eta of vertices. The contribution of this paper are 'nice' exponential time complexities that are bounded by functions of the form c(eta) with reasonably small constants c < 2: For arbitrary graphs we get a time complexity of 1.93782(eta). And for the special cases of split graphs, bipartite graphs, and graphs of maximum degree three, we reach time complexities of 1.41422(eta), 1.732061(eta), and 1.51433(eta), respectively.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [41] An Exact Algorithm for Lowest Edge Dominating Set
    Iwaide, Ken
    Nagamochi, Hiroshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (03): : 414 - 421
  • [42] On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms
    Fedor V. Fomin
    Serge Gaspers
    Artem V. Pyatkin
    Igor Razgon
    Algorithmica, 2008, 52 : 293 - 307
  • [43] On the minimum feedback vertex set problem: Exact and enumeration algorithms
    Fomin, Fedor V.
    Gaspers, Serge
    Pyatkin, Artem V.
    Razgon, Igor
    ALGORITHMICA, 2008, 52 (02) : 293 - 307
  • [44] Approximation algorithms for the b-edge dominating set problem and its related problems
    Fukunaga, T
    Nagamochi, H
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 747 - 756
  • [45] Applying Genetic Algorithms to Validate a Conjecture in Graph Theory: The Minimum Dominating Set Problem
    Cervantes-Ojeda, Jorge
    Gomez-Fuentes, Maria C.
    Fresan-Figueroa, Julian A.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2023, PT I, 2024, 14391 : 271 - 282
  • [46] Algorithms for minimum m-connected k-tuple dominating set problem
    Shang, Weiping
    Wan, Pengjun
    Yao, Frances
    Hu, Xiaodong
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 241 - 247
  • [47] The probabilistic minimum dominating set problem
    Boria, Nicolas
    Murat, Cecile
    Paschos, Vangelis Th.
    DISCRETE APPLIED MATHEMATICS, 2018, 234 : 93 - 113
  • [48] A note on the eternal dominating set problem
    Stephen Finbow
    Serge Gaspers
    Margaret-Ellen Messinger
    Paul Ottaway
    International Journal of Game Theory, 2018, 47 : 543 - 555
  • [49] Applying Genetic Algorithms to Validate a Conjecture in Graph Theory: The Minimum Dominating Set Problem
    Cervantes-Ojeda, Jorge
    Gomez-Fuentes, Maria C.
    Fresan-Figueroa, Julian A.
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 1089 - 1097
  • [50] The wake up dominating set problem
    Bannoura, Amir
    Ortolf, Christian
    Reindl, Leonhard
    Schindelhauer, Christian
    THEORETICAL COMPUTER SCIENCE, 2015, 608 : 120 - 134