A New Hybrid Approach for Wind Speed Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Cuckoo Search Algorithm

被引:21
|
作者
Liu, Tongxiang [1 ]
Liu, Shenzhong [2 ]
Heng, Jiani [2 ]
Gao, Yuyang [2 ]
机构
[1] Univ Adelaide, Fac Profess, Adelaide, SA 5000, Australia
[2] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 10期
关键词
cuckoo search algorithm; support vector machine; ensemble empirical mode decomposition; wind speed forecasting; forecasting validity; ARTIFICIAL NEURAL-NETWORKS; TIME-SERIES; PREDICTION; OPTIMIZATION; WAVELET; BANKS;
D O I
10.3390/app8101754
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wind speed forecasting plays a crucial role in improving the efficiency of wind farms, and increases the competitive advantage of wind power in the global electricity market. Many forecasting models have been proposed, aiming to enhance the forecast performance. However, some traditional models used in our experiment have the drawback of ignoring the importance of data preprocessing and the necessity of parameter optimization, which often results in poor forecasting performance. Therefore, in order to achieve a more satisfying performance in forecasting wind speed data, a new short-term wind speed forecasting method which consists of Ensemble Empirical Mode Decomposition (EEMD) for data preprocessing, and the Support Vector Machine (SVM)whose key parameters are optimized by the Cuckoo Search Algorithm (CSO)-is developed in this paper. This method avoids the shortcomings of some traditional models and effectively enhances the forecasting ability. To test the prediction ability of the proposed model, 10 min wind speed data from wind farms in Shandong Province, China, are used for conducting experiments. The experimental results indicate that the proposed model cannot only improve the forecasting accuracy, but can also be an effective tool in assisting the management of wind power plants.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Forecasting of Energy Consumption in China Based on Ensemble Empirical Mode Decomposition and Least Squares Support Vector Machine Optimized by Improved Shuffled Frog Leaping Algorithm
    Dai, Shuyu
    Niu, Dongxiao
    Li, Yan
    APPLIED SCIENCES-BASEL, 2018, 8 (05):
  • [32] Empirical Mode Decomposition Coupled with Least Square Support Vector Machine for River Flow Forecasting
    Ismail, Shuhaida
    Shabri, Ani
    Abadan, Siti Sarah
    2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 232 - 241
  • [33] Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm
    Wang, Jianzhou
    Zhou, Qingping
    Jiang, Haiyan
    Hou, Ru
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [34] A hybrid model for wind power forecasting based on ensemble empirical mode decomposition and wavelet neural networks
    Wang, He
    Hu, Zhijian
    Chen, Zhen
    Zhang, Menglin
    He, Jianbo
    Li, Chen
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2013, 28 (09): : 137 - 144
  • [35] Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting
    Hong, Wei-Chiang
    Fan, Guo-Feng
    ENERGIES, 2019, 12 (06):
  • [36] A novel hybrid algorithm based on Empirical Fourier decomposition and deep learning for wind speed forecasting
    Kumar, Bhupendra
    Yadav, Neha
    Sunil
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [37] Wind speed forecasting based on support vector machine with forecasting error estimation
    Ji, Guo-Rui
    Han, Pu
    Zhai, Yong-Jie
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 2735 - +
  • [38] NEW HYBRIDIZATION OF EMPIRICAL MODE DECOMPOSITION AND LEAST SQUARES SUPPORT VECTOR MACHINE MODEL IN FORECASTING MALAYSIA EXCHANGE RATES
    Rashid, Nur Izzati Abdul
    Shabri, Ani
    Samsudin, Ruhaidah
    2017 INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND SCIENCES (ICORAS), 2017,
  • [39] Empirical Mode Decomposition Based Ensemble Hybrid Machine Learning Models for Agricultural Commodity Price Forecasting
    Das, Pankaj
    Jha, Girish Kumar
    Lama, Achal
    STATISTICS AND APPLICATIONS, 2023, 21 (01): : 99 - 112
  • [40] Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
    Prasad, Ramendra
    Deo, Ravinesh C.
    Li, Yan
    Maraseni, Tek
    GEODERMA, 2018, 330 : 136 - 161