Shaping of a laser-accelerated proton beam for radiobiology applications via genetic algorithm

被引:3
|
作者
Cavallone, M. [1 ]
Flacco, A. [1 ]
Malka, V [1 ,2 ]
机构
[1] Ecole Polytech, Lab Opt Appl, Inst Polytech Paris, ENSTA ParisTech,CNRS,UMR7639, 828 Bd Marechaux, F-91762 Palaiseau, France
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-7610001 Rehovot, Israel
基金
欧盟地平线“2020”;
关键词
Laser-driven protons; Monte Carlo simulations; Beam shaping; Genetic algorithm; Dose optimisation; SIMULATION; IRRADIATION;
D O I
10.1016/j.ejmp.2019.10.027
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Laser-accelerated protons have a great potential for innovative experiments in radiation biology due to the sub-picosecond pulse duration and high dose rate achievable. However, the broad angular divergence makes them not optimal for applications with stringent requirements on dose homogeneity and total flux at the irradiated target. The strategy otherwise adopted to increase the homogeneity is to increase the distance between the source and the irradiation plane or to spread the beam with flat scattering systems or through the transport system itself. Such methods considerably reduce the proton flux and are not optimal for laser-accelerated protons. In this paper we demonstrate the use of a Genetic Algorithm (GA) to design an optimal non-flat scattering system to shape the beam and efficiently flatten the transversal dose distribution at the irradiated target. The system is placed in the magnetic transport system to take advantage of the presence of chromatic focusing elements to further mix the proton trajectories. The effect of a flat scattering system placed after the transport system is also presented for comparison. The general structure of the GA and its application to the shaping of a laser-accelerated proton beam are presented, as well as its application to the optimisation of dose distribution in a water target in air.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [41] A superconducting magnet design for a laser-accelerated proton therapy system
    Luo, W
    Fourkal, E
    Ma, C
    MEDICAL PHYSICS, 2004, 31 (06) : 1859 - 1859
  • [42] Particle selection for laser-accelerated proton therapy feasibility study
    Fourkal, E
    Li, JS
    Ding, M
    Tajima, T
    Ma, CM
    MEDICAL PHYSICS, 2003, 30 (07) : 1660 - 1670
  • [43] Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams
    Bolton, P. R.
    Borghesi, M.
    Brenner, C.
    Carroll, D. C.
    De Martinis, C.
    Flacco, A.
    Floquet, V.
    Fuchs, J.
    Gallegos, P.
    Giove, D.
    Green, J. S.
    Green, S.
    Jones, B.
    Kirby, D.
    McKenna, P.
    Neely, D.
    Nuesslin, F.
    Prasad, R.
    Reinhardt, S.
    Roth, M.
    Schramm, U.
    Scott, G. G.
    Ter-Avetisyan, S.
    Tolley, M.
    Turchetti, G.
    Wilkens, J. J.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2014, 30 (03): : 255 - 270
  • [44] Warp simulations for capture and control of laser-accelerated proton beams
    Nuernberg, Frank
    Friedman, A.
    Grote, D. P.
    Harresl, K.
    Logan, B. G.
    Schollmeier, M.
    Roth, M.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244
  • [45] Characterization of laser-accelerated proton beams from a 0.5 kJ sub-picosecond laser for radiography applications
    Huang, Chengkun
    Alvarado Alvarez, Mariana
    Batha, S. H.
    Broughton, D. P.
    Favalli, A.
    Grace, E.
    Iliev, M.
    Junghans, A.
    Mariscal, D. A.
    Medina, B. M.
    Palaniyappan, S.
    Reinovsky, R.
    Schmidt, T. R.
    Simpson, R. A.
    Strehlow, J. R.
    Wang, Z.
    Wong, C. -s.
    Wolfe, B.
    Wyatt, B.
    PHYSICS OF PLASMAS, 2025, 32 (03)
  • [46] ELIMED, future hadrontherapy applications of laser-accelerated beams
    Cirrone, Giuseppe A. P.
    Carpinelli, Massimo
    Cuttone, Giacomo
    Gammino, Santo
    Jia, S. Bijan
    Korn, Georg
    Maggiore, Mario
    Manti, Lorenzo
    Margarone, Daniele
    Prokupek, Jan
    Renis, Marcella
    Romano, Francesco
    Schillaci, Francesco
    Tomasello, Barbara
    Torrisi, Lorenzo
    Tramontana, Antonella
    Velyhan, Andriy
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 730 : 174 - 177
  • [47] An adaptive laser beam shaping technique based on a genetic algorithm
    杨平
    刘渊
    杨伟
    敖明武
    胡诗杰
    许冰
    姜文汉
    ChineseOpticsLetters, 2007, (09) : 497 - 500
  • [48] Laser-accelerated ion beams for future medical applications
    Kraft, S. D.
    Zeil, K.
    Bock, S.
    Bussmann, M.
    Kluge, T.
    Metzkes, J.
    Richter, T.
    Cowan, T. E.
    Sauerbrey, R.
    Schramm, U.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 13, 2009, 25 (13): : 106 - 107
  • [49] Spectral features of laser-accelerated protons for radiotherapy applications
    Weichsel, J.
    Fuchs, T.
    Lefebvre, E.
    d'Humieres, E.
    Oelfke, U.
    PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (16): : 4383 - 4397
  • [50] An adaptive laser beam shaping technique based on a genetic algorithm
    Yang, Ping
    Liu, Yuan
    Yang, Wei
    Ao, Minwu
    Hu, Shijie
    Xu, Bing
    Jiang, Wenhan
    CHINESE OPTICS LETTERS, 2007, 5 (09) : 497 - 500