Shaping of a laser-accelerated proton beam for radiobiology applications via genetic algorithm

被引:3
|
作者
Cavallone, M. [1 ]
Flacco, A. [1 ]
Malka, V [1 ,2 ]
机构
[1] Ecole Polytech, Lab Opt Appl, Inst Polytech Paris, ENSTA ParisTech,CNRS,UMR7639, 828 Bd Marechaux, F-91762 Palaiseau, France
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-7610001 Rehovot, Israel
基金
欧盟地平线“2020”;
关键词
Laser-driven protons; Monte Carlo simulations; Beam shaping; Genetic algorithm; Dose optimisation; SIMULATION; IRRADIATION;
D O I
10.1016/j.ejmp.2019.10.027
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Laser-accelerated protons have a great potential for innovative experiments in radiation biology due to the sub-picosecond pulse duration and high dose rate achievable. However, the broad angular divergence makes them not optimal for applications with stringent requirements on dose homogeneity and total flux at the irradiated target. The strategy otherwise adopted to increase the homogeneity is to increase the distance between the source and the irradiation plane or to spread the beam with flat scattering systems or through the transport system itself. Such methods considerably reduce the proton flux and are not optimal for laser-accelerated protons. In this paper we demonstrate the use of a Genetic Algorithm (GA) to design an optimal non-flat scattering system to shape the beam and efficiently flatten the transversal dose distribution at the irradiated target. The system is placed in the magnetic transport system to take advantage of the presence of chromatic focusing elements to further mix the proton trajectories. The effect of a flat scattering system placed after the transport system is also presented for comparison. The general structure of the GA and its application to the shaping of a laser-accelerated proton beam are presented, as well as its application to the optimisation of dose distribution in a water target in air.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [1] Radiobiology with laser-accelerated quasi-monoenergetic proton beams
    Yogo, A.
    Maeda, T.
    Hori, T.
    Sakaki, H.
    Ogura, K.
    Nishiuchi, M.
    Sagisaka, A.
    Bolton, P. R.
    Murakami, M.
    Kawanishi, S.
    Kondo, K.
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS AND MEDICAL APPLICATIONS OF LASER-GENERATED SECONDARY SOURCES OF RADIATION AND PARTICLES, 2011, 8079
  • [2] Tumour irradiation in mice with a laser-accelerated proton beam
    Florian Kroll
    Florian-Emanuel Brack
    Constantin Bernert
    Stefan Bock
    Elisabeth Bodenstein
    Kerstin Brüchner
    Thomas E. Cowan
    Lennart Gaus
    René Gebhardt
    Uwe Helbig
    Leonhard Karsch
    Thomas Kluge
    Stephan Kraft
    Mechthild Krause
    Elisabeth Lessmann
    Umar Masood
    Sebastian Meister
    Josefine Metzkes-Ng
    Alexej Nossula
    Jörg Pawelke
    Jens Pietzsch
    Thomas Püschel
    Marvin Reimold
    Martin Rehwald
    Christian Richter
    Hans-Peter Schlenvoigt
    Ulrich Schramm
    Marvin E. P. Umlandt
    Tim Ziegler
    Karl Zeil
    Elke Beyreuther
    Nature Physics, 2022, 18 : 316 - 322
  • [3] Tumour irradiation in mice with a laser-accelerated proton beam
    Kroll, Florian
    Brack, Florian-Emanuel
    Bernert, Constantin
    Bock, Stefan
    Bodenstein, Elisabeth
    Bruechner, Kerstin
    Cowan, Thomas E.
    Gaus, Lennart
    Gebhardt, Rene
    Helbig, Uwe
    Karsch, Leonhard
    Kluge, Thomas
    Kraft, Stephan
    Krause, Mechthild
    Lessmann, Elisabeth
    Masood, Umar
    Meister, Sebastian
    Metzkes-Ng, Josefine
    Nossula, Alexej
    Pawelke, Joerg
    Pietzsch, Jens
    Pueschel, Thomas
    Reimold, Marvin
    Rehwald, Martin
    Richter, Christian
    Schlenvoigt, Hans-Peter
    Schramm, Ulrich
    Umlandt, Marvin E. P.
    Ziegler, Tim
    Zeil, Karl
    Beyreuther, Elke
    NATURE PHYSICS, 2022, 18 (03) : 316 - +
  • [4] Proton trajectories and electric fields in a laser-accelerated focused proton beam
    Foord, M. E.
    Bartal, T.
    Bellei, C.
    Key, M.
    Flippo, K.
    Stephens, R. B.
    Patel, P. K.
    McLean, H. S.
    Jarrott, L. C.
    Wei, M. S.
    Beg, F. N.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [5] Preparation of laser-accelerated proton beams for radiobiological applications
    Metzkes, J.
    Cowan, T. E.
    Karsch, L.
    Kraft, S. D.
    Pawelke, J.
    Richter, C.
    Richter, T.
    Zeil, K.
    Schramm, U.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 653 (01): : 172 - 175
  • [6] Laser-Accelerated Proton Therapy
    Enghardt, W.
    EUROPEAN JOURNAL OF CANCER, 2011, 47 : S65 - S65
  • [7] Study on the Irradiation Characteristics of Laser-Accelerated Proton Beam on SiC
    Zhou D.
    Li D.
    Chen Y.
    Li Y.
    Yang T.
    Cheng H.
    Wu M.
    Li Y.
    Yan Y.
    Xia Y.
    Lin C.
    Yan X.
    Zhao Z.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (03): : 405 - 411
  • [8] Particle selection and beam collimation system for laser-accelerated proton beam therapy
    Luo, W
    Fourkal, E
    Li, JS
    Ma, CM
    MEDICAL PHYSICS, 2005, 32 (03) : 794 - 806
  • [9] Manipulation of laser-accelerated proton beam profiles by nanostructured and microstructured targets
    Giuffrida, L.
    Svensson, K.
    Psikal, J.
    Dalui, M.
    Ekerfelt, H.
    Gonzalez, I. Gallardo
    Lundh, O.
    Persson, A.
    Lutoslawski, P.
    Scuderi, V.
    Kaufman, J.
    Wiste, T.
    Lastovicka, T.
    Picciotto, A.
    Bagolini, A.
    Crivellari, M.
    Bellutti, P.
    Milluzzo, G.
    Cirrone, G. A. P.
    Magnusson, J.
    Gonoskov, A.
    Korn, G.
    Wahlstrom, C-G.
    Margarone, D.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (08):
  • [10] Pointing of laser-accelerated proton beams
    Schreiber, J
    Ter-Avetisyan, S
    Risse, E
    Kalachnikov, MP
    Nickles, PV
    Sandner, W
    Schramm, U
    Habs, D
    Witte, J
    Schnürer, M
    PHYSICS OF PLASMAS, 2006, 13 (03)