Real 3x+1

被引:5
|
作者
Misiurewicz, M
Rodrigues, A
机构
[1] IUPUI, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Univ Minho, Escola Ciencias, Dept Matemat, P-4710057 Braga, Portugal
关键词
D O I
10.1090/S0002-9939-04-07696-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The famous 3x+1 problem involves applying two maps: T-0(x) = x/2 and T-1(x) = (3x + 1)/2 to positive integers. If x is even, one applies T-0, if it is odd, one applies T-1. The conjecture states that each trajectory of the system arrives to the periodic orbit {1, 2}. In this paper, instead of choosing each time which map to apply, we allow ourselves more freedom and apply both T-0 and T-1 independently of x. That is, we consider the action of the free semigroup with generators T-0 and T-1 on the space of positive real numbers. We prove that this action is minimal ( each trajectory is dense) and that the periodic points are dense. Moreover, we give a full characterization of the group of transformations of the real line generated by T-0 and T-1.
引用
收藏
页码:1109 / 1118
页数:10
相关论文
共 50 条
  • [21] Erdos, Klarner, and the 3x+1 Problem
    Lagarias, Jeffrey C.
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 753 - 776
  • [22] UNIFORM DISTRIBUTION IN THE (3x+1)-PROBLEM
    Sinai, Ya. G.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (04) : 1429 - 1440
  • [23] Averaging structure in the 3x+1 problem
    Chamberland, Marc
    JOURNAL OF NUMBER THEORY, 2015, 148 : 384 - 397
  • [24] THE 3X+1 PROBLEM AND ITS GENERALIZATIONS
    LAGARIAS, JC
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (01): : 3 - 23
  • [25] Construction of periods for 3x+1 problem
    Aliyev, Yagub N.
    Suleymanov, Vugar A.
    2013 7TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2013, : 413 - 415
  • [26] RESULTS ON THE 3x+1 AND 3x+d CONJECTURES
    Holden, Dhiraj
    FIBONACCI QUARTERLY, 2011, 49 (02): : 131 - 133
  • [27] 趣提“3x+1问题”
    李中平
    中小学数学(初中版), 2008, (Z2) : 75 - 76
  • [28] 3x+1猜想的证明
    韩桂平
    语数外学习(高中版中旬), 2013, (08) : 29 - 29
  • [29] A direct system for the 3x+1 dynamics
    Leventides, John G.
    IFAC PAPERSONLINE, 2021, 54 (09): : 291 - 296
  • [30] 趣提“3x+1问题”
    李中平
    中小学数学(初中版), 2008, (初中版) : 75 - 76