Real 3x+1

被引:5
|
作者
Misiurewicz, M
Rodrigues, A
机构
[1] IUPUI, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Univ Minho, Escola Ciencias, Dept Matemat, P-4710057 Braga, Portugal
关键词
D O I
10.1090/S0002-9939-04-07696-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The famous 3x+1 problem involves applying two maps: T-0(x) = x/2 and T-1(x) = (3x + 1)/2 to positive integers. If x is even, one applies T-0, if it is odd, one applies T-1. The conjecture states that each trajectory of the system arrives to the periodic orbit {1, 2}. In this paper, instead of choosing each time which map to apply, we allow ourselves more freedom and apply both T-0 and T-1 independently of x. That is, we consider the action of the free semigroup with generators T-0 and T-1 on the space of positive real numbers. We prove that this action is minimal ( each trajectory is dense) and that the periodic points are dense. Moreover, we give a full characterization of the group of transformations of the real line generated by T-0 and T-1.
引用
收藏
页码:1109 / 1118
页数:10
相关论文
共 50 条
  • [1] The real 3x+1 problem
    Konstadinidis, Pavlos B.
    ACTA ARITHMETICA, 2006, 122 (01) : 35 - 44
  • [2] ON THE 3X+1 PROBLEM
    VENTURINI, G
    ADVANCES IN APPLIED MATHEMATICS, 1989, 10 (03) : 344 - 347
  • [3] The 3x+1 semigroup
    Applegate, D
    Lagarias, JC
    JOURNAL OF NUMBER THEORY, 2006, 117 (01) : 146 - 159
  • [4] The 3x+1 fractal
    Pe, JL
    COMPUTERS & GRAPHICS-UK, 2004, 28 (03): : 431 - 435
  • [5] Real dynamics of a 3-power extension of the 3x+1 function
    Dumont, JP
    Reiter, CA
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (06): : 875 - 893
  • [6] ON THE 3X+1 PROBLEM
    KUTTLER, JR
    ADVANCES IN APPLIED MATHEMATICS, 1994, 15 (02) : 183 - 185
  • [7] 3x+1 minus the
    Monks, KG
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2002, 5 (01): : 47 - 53
  • [8] Periodic Point at Real Axis for a Generalized 3x+1 Function
    Liu Shuai
    Wang Zhengxuan
    RECENT TRENDS IN MATERIALS AND MECHANICAL ENGINEERING MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 55-57 : 1670 - 1674
  • [9] The 3x+1 Problem For Rational Numbers Invariance of Periodic Sequences in 3x+1 Problem
    Aliyev, Yagub N.
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT2020), 2020,
  • [10] 关于3X+1问题
    洪伯阳
    湖北师范学院学报(自然科学版), 1986, (01) : 1 - 5