Improved sulfate reduction efficiency of sulfate-reducing bacteria in sulfate-rich systems by acclimatization and multiple-grouting

被引:16
|
作者
Wang, Fan [1 ]
Peng, Shuquan [2 ]
Fan, Ling [2 ]
Li, Yang [3 ]
机构
[1] Cent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
[2] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Hunan, Peoples R China
[3] Hunan Univ Sci & Technol Xiangtan, Sch Resource & Environm & Safety Engn, Xiangtan 411021, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfate reducing bacteria; Reduction efficiency; Soil salinization; Acclimation; Sulfate-rich systems; CONTAINING WASTE-WATER; POROUS MATERIALS; SALINE SOIL; SALT DAMAGE; CRYSTALLIZATION; BIOTREATMENT; COMMUNITY; PRESSURE; BIOCHAR; GYPSUM;
D O I
10.1016/j.aej.2022.03.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The acclimation of sulfate-reducing bacteria (SRB) was performed to improve its adaptation in sulfate-rich systems with high sodium sulfate as a solution for disposing of soil salinization. The effects of pH, temperature, and carbon-sulfur ratio (CSR) on the activity and reduction efficiency (RE) of SRB were analyzed, and the influence of grouting times (GTs) on RE was studied. The impact of different sulfate-rich systems (i.e., sulfate-rich solution and soil) with different salinity on the RE of SRB was investigated. Results show that the optimum temperature and pH for the best activity and RE of SRB were 30 degrees C and 7.0, respectively. The multiple acclimations for SRB significantly improved the activity and RE of SRB at high CSR. The RE of SRB decreased with increasing salinity since high salinity could inhibit SRB activity. The maximum RE of SRB-200 in sulfate-rich soils with 2% salinity is 40%, which may be due to the significant salinity tolerance degree of SRB-200, which is higher than SRB-150 and SRB-175. In addition, the RE of SRB in sodium sulfate solution was higher than that in sulfate-rich soil due to the soil having a complex skeletal structure. The RE of SRB significantly increased after low GTs (<5) and then remained constant after high GTs (>5). The optimal GTs obtained by SRB-150, SRB175 and SRB-200 were 4, 4 and 5, respectively, corresponding to the final cumulative REs of 37.2%, 45.2% and 55.2%, respectively. The SEM results shows the formation of sulfides verified the reliability of SRB reduction in sulfate-rich systems. All results provide an important reference for the effective utilization of SRB in sulfate-rich systems. (C) 2022 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University
引用
收藏
页码:9993 / 10005
页数:13
相关论文
共 50 条
  • [41] AEROBIC RESPIRATION IN SULFATE-REDUCING BACTERIA
    DILLING, W
    CYPIONKA, H
    FEMS MICROBIOLOGY LETTERS, 1990, 71 (1-2) : 123 - 127
  • [42] SULFATE-REDUCING BACTERIA IN THE PERIODONTAL POCKET
    VANDERHOEVEN, JS
    VANDENKIEBOOM, CWA
    SCHAEKEN, MJM
    ORAL MICROBIOLOGY AND IMMUNOLOGY, 1995, 10 (05): : 288 - 290
  • [43] SULFATE-REDUCING BACTERIA AND ANAEROBIC CORROSION
    HAMILTON, WA
    ANNUAL REVIEW OF MICROBIOLOGY, 1985, 39 : 195 - 217
  • [44] Sulfate-reducing bacteria and immobilization of metals
    Perry, K.A., 1600, Taylor & Francis Ltd, Basingstoke, United Kingdom (13): : 1 - 2
  • [45] SULFATE-REDUCING BACTERIA IN BOVINE FECES
    CARLI, T
    DIKER, KS
    EYIGOR, A
    LETTERS IN APPLIED MICROBIOLOGY, 1995, 21 (04) : 228 - 229
  • [46] SULFATE-REDUCING BACTERIA IN THE PERIODONTAL POCKET
    VANDERHOEVEN, JS
    SCHAEKEN, MJM
    JOURNAL OF DENTAL RESEARCH, 1995, 74 : 587 - 587
  • [47] OPTIMIZING SUBSTRATE FOR SULFATE-REDUCING BACTERIA
    CHANG, LK
    UPDEGRAFF, DM
    WILDEMAN, TR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 38 - CHED
  • [48] Metallo proteins in sulfate-reducing bacteria
    Fritz, G
    Büchert, T
    Steuber, J
    Kroneck, PMH
    JOURNAL OF INORGANIC BIOCHEMISTRY, 1999, 74 (1-4) : 196 - 196
  • [49] PHYSIOLOGY AND ECOLOGY OF THE SULFATE-REDUCING BACTERIA
    GIBSON, GR
    JOURNAL OF APPLIED BACTERIOLOGY, 1990, 69 (06): : 769 - 797
  • [50] ELECTROKINETIC PROPERTIES OF SULFATE-REDUCING BACTERIA
    ULANOVSKII, IV
    RUDENKO, EK
    SUPRUN, EA
    LEDENEV, AV
    MICROBIOLOGY, 1980, 49 (01) : 98 - 103