Computing eigenmodes of elliptic operators using increasingly flat radial basis functions

被引:1
|
作者
Huang, C-S. [1 ]
Hung, C. -H. [2 ]
Wang, S. [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] ROC Air Force Acad, Dept Math & Phys Sci, Sisou 1,Jieshou W Rd, Kaohsiung 82047, Taiwan
关键词
Multiquadric collocation method; Error estimate; Laplace operator; Eigenmodes; Interpolating polynomial; SCATTERED DATA; INTERPOLATION;
D O I
10.1016/j.enganabound.2016.01.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solving multi-dimensional eigenmodes problem for elliptic operator using radial basis functions (RBFs) was proposed by Platte and Driscoll (2004) [14]. They convert the eigenmodes problem to an eigenpairs problem of a finite dimensional matrix. We formulate an approach based on using finite order interpolating polynomials as eigenfunctions for eigenmodes problem. We prove that, under some simple conditions on the RBFs, two approaches converge when increasingly flat BRFs are being used. These results are supported by numerical examples. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条