SCALING UP A MULTISPECTRAL RESNET-50 TO 128 GPUS

被引:2
|
作者
Sedona, Rocco [1 ,2 ]
Cavallaro, Gabriele [1 ]
Jitsev, Jenia [1 ]
Strube, Alexandre [1 ]
Riedel, Morris [1 ,2 ]
Book, Matthias [2 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, Julich, Germany
[2] Univ Iceland, Sch Engn & Nat Sci, Reykjavik, Iceland
关键词
Distributed deep learning; high performance computing; residual neural network; convolutional neural network; classification; sentinel-2;
D O I
10.1109/IGARSS39084.2020.9324237
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Similarly to other scientific domains, Deep Learning (DL) holds great promises to fulfil the challenging needs of Remote Sensing (RS) applications. However, the increase in volume, variety and complexity of acquisitions that are carried out on a daily basis by Earth Observation (EO) missions generates new processing and storage challenges within operational processing pipelines. The aim of this work is to show that High-Performance Computing (HPC) systems can speed up the training time of Convolutional Neural Networks (CNNs). Particular attention is put on the monitoring of the classification accuracy that usually degrades when using large batch sizes. The experimental results of this work show that the training of the model scales up to a batch size of 8,000, obtaining classification performances in terms of accuracy in line with those using smaller batch sizes.
引用
收藏
页码:1058 / 1061
页数:4
相关论文
共 50 条
  • [21] 基于改进ResNet-50的图像特征提取网络
    汤博宇
    焦良葆
    徐逸
    魏小玉
    孟琳
    计算机测量与控制, 2023, 31 (06) : 162 - 167
  • [22] An Early Detection and Classification of Alzheimer's Disease Framework Based on ResNet-50
    Nithya, V. P.
    Mohanasundaram, N.
    Santhosh, R.
    CURRENT MEDICAL IMAGING, 2024, 20
  • [23] 基于ResNet-50垃圾分类算法的改进及应用
    王超
    万兆江
    周瑜杰
    刘雨衡
    智能计算机与应用, 2022, 12 (10) : 184 - 188
  • [24] On classification of Sentinel-2 satellite images by a neural network ResNet-50
    Bychkov, I. V.
    Ruzhnikov, G. M.
    Fedorov, R. K.
    Popova, A. K.
    Avramenko, Y. V.
    COMPUTER OPTICS, 2023, 47 (03) : 474 - +
  • [25] A Comparative ResNet-50, InceptionV3 and EfficientNetB3 with Retinal Disease
    Nuipian, Warameth
    Meesad, Phayung
    Kanjanawattana, Sarunya
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, NLPIR 2023, 2023, : 283 - 287
  • [26] BGR Images-Based Human Fall Detection Using ResNet-50 and LSTM
    Singh, Divya
    Gupta, Meenu
    Kumar, Rakesh
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 175 - 186
  • [27] Investigation of VGG-16, ResNet-50 and AlexNet Performance for Brain Tumor Detection
    Azaharan, Tun Azshafarrah Ton Komar
    Mahamad, Abd Kadir
    Saon, Sharifah
    Muladi, Sri Wiwoho
    Mudjanarko, Sri Wiwoho
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (08) : 97 - 109
  • [28] 一种融合Resnet-50与SVR的年龄估计
    邵定琴
    张乾
    岳诗琴
    范玉
    计算机仿真, 2023, 40 (01) : 272 - 277
  • [29] 基于改进ResNet-50残差网络的纤维分类方法
    黄烜
    孙晗
    林博生
    殷明骏
    杨志军
    西安工程大学学报, 2022, 36 (04) : 19 - 25
  • [30] 基于分支ResNet-50的EAST场景文字检测算法
    龙言
    施水才
    肖诗斌
    北京信息科技大学学报(自然科学版), 2020, 35 (03) : 94 - 98