Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode

被引:36
|
作者
Chen, Xiaoyang [1 ]
Fang, Youlong [1 ]
Tian, Jiyu [1 ]
Lu, Haiyan [1 ]
Ai, Xinping [1 ]
Yang, Hanxi [1 ]
Cao, Yuliang [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Engn Res Ctr Organosilicon Cpds & Mat, Minist Educ, Wuhan 430072, Peoples R China
关键词
sodium-ion batteries; anode; hard carbon; reaction mechanism; intercalation; POTENTIOSTATIC INTERMITTENT TITRATION; LITHIUM INSERTION; CATHODE MATERIALS; HIGH-CAPACITY; LOW-COST; PERFORMANCE; ELECTRODES; GRAPHITE; GROWTH; METAL;
D O I
10.1021/acsami.1c03748
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hard carbon (HC) has been actively investigated as a high-capacity and low-cost anode material for sodium-ion batteries (SIBs); however, its sodium-storage mechanism has remained controversial, which imposes great difficulties in the design and construction of better microstructured HC materials. To obtain a deeper understanding of the Na-storage mechanism, we comparatively investigated electrochemical behaviors of HC and graphite for Na- and Li-storage reactions. The experimental results reveal that the Na-storage reaction on HC at a low-potential plateau proceeds in a manner similar to the Li+-insertion reaction on graphite but very differently from the Li+-storage process on HC, suggesting that the Na-storage mechanism of HC at a low-voltage plateau operates through the Na+ intercalation into the graphitic layers for the formation of sodium-graphite intercalation compounds (Na-GICs) and is consistent with the "adsorption-intercalation" mechanism. Our work might provide new insight for designing better HC materials of high-energy density SIBs.
引用
收藏
页码:18914 / 18922
页数:9
相关论文
共 50 条
  • [21] Revealing sodium ion storage mechanism in hard carbon
    Alvin, Stevanus
    Yoon, Dohyeon
    Chandra, Christian
    Cahyadi, Handi Setiadi
    Park, Jae-Ho
    Chang, Wonyoung
    Chung, Kyung Yoon
    Kim, Jaehoon
    CARBON, 2019, 145 : 67 - 81
  • [22] Ionic-conductive sodium titanate to boost sodium-ion transport kinetics of hard carbon anode in sodium-ion batteries
    Li, Fan
    Gong, Hao
    Zhang, Yanlei
    Liu, Xinyu
    Jiang, Zhenming
    Chen, Lian
    Huang, Jianying
    Zhang, Yanyan
    Jiang, Yinzhu
    Chen, Binmeng
    Tang, Yuxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 981
  • [23] Electrochemical properties of carbon nanofibers as anode for rechargeable sodium-ion batteries
    Ji, Shengsheng
    Wang, Liyong
    Fan, Xiangqian
    Wang, Mei
    Li, Peng
    Liu, Lei
    Yang, Yiwei
    Luo, Yanhong
    Li, Qiudi
    Wang, Huiqi
    Hu, Shengliang
    DIAMOND AND RELATED MATERIALS, 2025, 152
  • [24] Research progress of carbon as anode materials for sodium-ion storage devices
    Zong, Shirong
    Wang, Ling
    Yao, Qiuyue
    Yan, Wei
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (10): : 5581 - 5600
  • [25] Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries
    Bobyleva, Zoia V.
    Drozhzhin, Oleg A.
    Dosaev, Kirill A.
    Kamiyama, Azusa
    Ryazantsev, Sergey V.
    Komaba, Shinichi
    Antipov, Evgeny V.
    ELECTROCHIMICA ACTA, 2020, 354 (354)
  • [26] Phenolic Resin Derived Hard Carbon Anode for Sodium-Ion Batteries: A Review
    Dey, Shaikat Chandra
    Worfolk, Brian
    Lower, Lillian
    Sagues, William Joe
    Nimlos, Mark R.
    Kelley, Stephen S.
    Park, Sunkyu
    ACS ENERGY LETTERS, 2024, 9 (06): : 2590 - 2614
  • [27] P-doped Hard Carbon as Anode Material for Sodium-ion Batteries
    Hakim, Charifa
    Asfaw, Habtom Desta
    Dahbi, Mouad
    Brandell, Daniel
    Edstrom, Kristina
    Younesi, Reza
    Saadoune, Ismael
    PROCEEDINGS OF 2019 7TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2019, : 754 - 756
  • [28] Designing Tin and Hard Carbon Architecture for Stable Sodium-Ion Battery Anode
    Shahzad, Rana Faisal
    Rasul, Shahid
    Mamlouk, Mohamed
    Brewis, Ian
    Shakoor, Rana Abdul
    Zia, Abdul Wasy
    SMALL STRUCTURES, 2025, 6 (02):
  • [29] Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery
    Qi Liu
    Rigan Xu
    Daobin Mu
    Guoqiang Tan
    Hongcai Gao
    Ning Li
    Renjie Chen
    Feng Wu
    Carbon Energy, 2022, 4 (03) : 458 - 479
  • [30] Recent progress on hard carbon and other anode materials for sodium-ion batteries
    Shafiee, Farah Nabilah
    Noor, Siti Aminah Mohd
    Abdah, Muhammad Amirul Aizat Mohd
    Jamal, Siti Hasnawati
    Samsuri, Alinda
    HELIYON, 2024, 10 (08)