A Study on the Lyapunov Exponents of Sequences Generated by the Logistic Map over Integers

被引:0
|
作者
Miyazaki, Takeru [1 ]
Miyazaki, Chikara [1 ]
Uehara, Satoshi [1 ]
Araki, Shunsuke [2 ]
机构
[1] Univ Kitakyushu, Fac Environm Engn, 1-1 Hibikino, Kitakyushu, Fukuoka 8080135, Japan
[2] Kyushu Inst Technol, Fac Comp Sci & Syst Engn, Iizuka, Fukuoka 8208502, Japan
来源
SIXTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS | 2013年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We are interested in the properties of sequences generated by the logistic map over integers. In the present paper, we give the Lyapunov exponents of the sequences generated by the map. Then, we confirm good correlations between a sign of the exponents and a few properties of randomness such as averages periods and link-lengths, and an occurrence rate of '0' bit in the generated sequence. Then, we prove that the exponent indicates stability of the sequence.
引用
收藏
页码:68 / 71
页数:4
相关论文
共 50 条
  • [31] Cryptanalysis of the Multilinear Map over the Integers
    Cheon, Jung Hee
    Han, Kyoohyung
    Lee, Changmin
    Ryu, Hansol
    Stehle, Damien
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015, PT I, 2015, 9056 : 3 - 12
  • [32] Multilevel perfect sequences over integers
    Li, X. D.
    Fan, P. Z.
    Mow, W. H.
    Darnell, M.
    ELECTRONICS LETTERS, 2011, 47 (08) : 496 - 497
  • [33] The set of fiber-bunched cocycles with nonvanishing Lyapunov exponents over a partially hyperbolic map is open
    Backes, Lucas
    Poletti, Mauricio
    Sanchez, Adriana
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) : 1719 - 1740
  • [34] Statistics of finite-time Lyapunov exponents in the Ulam map
    Anteneodo, C
    PHYSICAL REVIEW E, 2004, 69 (01): : 6
  • [35] An Improved Gumowski-Mira Map with Symmetric Lyapunov Exponents
    Yan, Dengwei
    Ji'e, Musha
    Wang, Lidan
    Shi, Hang
    Duan, Shukai
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (07):
  • [36] Lyapunov exponents of linear cocycles over Markov shifts
    Malheiro, Elais C.
    Viana, Marcelo
    STOCHASTICS AND DYNAMICS, 2015, 15 (03)
  • [37] Sequences with zero correlation over Gaussian integers
    Deng, XM
    Fan, PZ
    Suehiro, N
    ELECTRONICS LETTERS, 2000, 36 (06) : 552 - 553
  • [38] MAXIMAL LENGTH SEQUENCES OVER GAUSSIAN INTEGERS
    FAN, PZ
    DARNELL, M
    ELECTRONICS LETTERS, 1994, 30 (16) : 1286 - 1287
  • [39] THE LYAPUNOV EXPONENTS IN A PERIODIC WINDOW FOR A WEAK-COUPLED MAP LATTICE
    DING, EJ
    LU, YN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (10): : 2897 - 2906
  • [40] A Bernoulli toral linked twist map without positive Lyapunov exponents
    Nicol, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) : 1253 - 1263