Variational acceleration for subspace iteration method. Application to nuclear power reactors

被引:0
|
作者
Vidal, V
Verdu, G
Ginestar, D
Munoz-Cobo, JL
机构
[1] Univ Politecn Valencia, Dept Ingn Quim & Nucl, E-46071 Valencia, Spain
[2] Univ Politecn Valencia, Dept Sistemas Informat & Computac, E-46071 Valencia, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
关键词
subspace iteration; variational acceleration; lambda modes;
D O I
10.1002/(SICI)1097-0207(19980215)41:3<391::AID-NME289>3.3.CO;2-A
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Subspace Iteration Method is a popular approach to obtain the dominant eigenvalues and their corresponding eigenvectors of a given matrix. We have applied this method, making use of two Rayleigh-Ritz projections, to obtain the dominant Lambda Modes of a nuclear power reactor. Also, we have developed a variational acceleration technique for this method, and we have stated that this variational acceleration is very convenient, mainly, when the required number of eigenvalues is low. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:391 / 407
页数:17
相关论文
共 50 条
  • [21] Application of the variational iteration method to the Whitham-Broer-Kaup equations
    Rafei, M.
    Daniali, H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) : 1079 - 1085
  • [22] Application of variational iteration method to Nonlinear differential equations of fractional order
    Odibat, ZM
    Momani, S
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2006, 7 (01) : 27 - 34
  • [23] Application of variational iteration method to fractional initial-value problems
    Ates, Inan
    Yildirim, Ahmet
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (07) : 877 - 883
  • [24] Application of Variational Iteration Method to Fractional Hyperbolic Partial Differential Equations
    Dal, Fadime
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [25] Application of variational iteration method to the generalized Burgers-Huxley equation
    Batiha, B.
    Noorani, M. S. M.
    Hashim, I.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (03) : 660 - 663
  • [26] Application of variational iteration method for Hamilton-Jacobi-Bellman equations
    Kafash, B.
    Delavarkhalafi, A.
    Karbassi, S. M.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 3917 - 3928
  • [27] Application of the variational iteration method for nonlinear free vibration of conservative oscillators
    Baghani, M.
    Fattahi, M.
    Amjadian, A.
    SCIENTIA IRANICA, 2012, 19 (03) : 513 - 518
  • [28] Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations
    Barari, A.
    Omidvar, M.
    Ghotbi, Abdoul R.
    Ganji, D. D.
    ACTA APPLICANDAE MATHEMATICAE, 2008, 104 (02) : 161 - 171
  • [29] Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations
    A. Barari
    M. Omidvar
    Abdoul R. Ghotbi
    D. D. Ganji
    Acta Applicandae Mathematicae, 2008, 104 : 161 - 171
  • [30] New technologies for acceleration and vibration measurements inside operating nuclear power reactors
    Runkel, J
    Stegemann, D
    Fiedler, J
    Heidemann, P
    Blaser, R
    Schmid, F
    Trobitz, M
    Hirsch, L
    Thoma, K
    PROCEEDINGS OF THE WORKSHOP ON CORE MONITORING FOR COMMERCIAL REACTORS: IMPROVEMENTS IN SYSTEMS AND METHODS, 2000, : 103 - 115