Segmentation of cDNA Microarray Spots Using K-means Clustering Algorithm and Mathematical Morphology

被引:2
|
作者
Hu Yijun [1 ]
Weng Guirong [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou, Peoples R China
关键词
cDNA Microarray image; K-means clustering; Mathematical Morphology;
D O I
10.1109/ICIE.2009.17
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Complementary DNA microarray technology is a powerful tool in many areas. Usually a two channel microarray Red Green (RC) image is obtained. Due to the nature of cDNA microarray technology, a number of impairments affect the cDNA microarray image before the analysis such as identification of differentially expressed genes. Microarray image processing plays a crucial role in the extraction and quantitative analysis of the relative abundance of the DNA product. In this paper, a method combined K-means clustering algorithm and mathematical morphology is presented. Mathematical morphology is a useful tool for extracting image components. K-means clustering algorithm has a good performance in the segmentation of microarray image processing. The result of the experiment shows that the method presented in this paper is accurate, automatic and robust.
引用
收藏
页码:110 / 113
页数:4
相关论文
共 50 条
  • [31] Clustering Using Boosted Constrained k-Means Algorithm
    Okabe, Masayuki
    Yamada, Seiji
    FRONTIERS IN ROBOTICS AND AI, 2018, 5
  • [32] Improved Document Clustering using K-means Algorithm
    Bide, Pramod
    Shedge, Rajashree
    2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES, 2015,
  • [33] Improving the Walktrap Algorithm Using K-Means Clustering
    Brusco, Michael
    Steinley, Douglas
    Watts, Ashley L.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2024, 59 (02) : 266 - 288
  • [34] Image segmentation based on rough entropy and K-means clustering algorithm
    Xu, Yi
    Li, Long-Shu
    Li, Xue-Jun
    Huadong Ligong Daxue Xuebao /Journal of East China University of Science and Technology, 2007, 33 (02): : 255 - 258
  • [35] A volume segmentation algorithm for medical image based on K-means clustering
    Li Xinwu
    2008 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2008, : 881 - 884
  • [36] Refined SAR Image Segmentation Algorithm Based on K-means Clustering
    Xing, Tao
    Hu, Qingrong
    Li, Jun
    Wang, Guanyong
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [37] Adaptive k-means clustering algorithm for MR breast image segmentation
    Moftah, Hossam M.
    Azar, Ahmad Taher
    Al-Shammari, Eiman Tamah
    Ghali, Neveen I.
    Hassanien, Aboul Ella
    Shoman, Mahmoud
    NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8): : 1917 - 1928
  • [38] Optimization of K-Means clustering Using Genetic Algorithm
    Irfan, Shadab
    Dwivedi, Gaurav
    Ghosh, Subhajit
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 157 - 162
  • [39] Colour Constancy using K-means Clustering Algorithm
    Hussain, Md. Akmol
    Akbari, Akbar Sheikh
    Ghaffari, Ahmad
    2016 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2016), 2016, : 283 - 288
  • [40] RACK: RApid Clustering using K-means algorithm
    Garg, Vikas K.
    Murty, M. N.
    2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, 2009, : 621 - 626