Empirical likelihood intervals for conditional Value-at-Risk in ARCH/GARCH models

被引:4
|
作者
Gong, Yun
Li, Zhouping [2 ]
Peng, Liang [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Lanzhou Univ, Lanzhou 730000, Peoples R China
关键词
ARCH; GARCH model; empirical likelihood; Value-at-Risk; SQUARED RESIDUAL CORRELATIONS; GARCH MODELS; CONFIDENCE-INTERVALS; ARCH; ERRORS;
D O I
10.1111/j.1467-9892.2009.00644.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Value-at-Risk (VaR) is a simple, but useful measure in risk management. When some volatility model is employed, conditional VaR is of importance. As autoregressive conditional heteroscedastic (ARCH) and generalized ARCH (GARCH) models are widely used in modelling volatilities, in this article, we propose empirical likelihood methods to obtain an interval estimation for the conditional VaR with the volatility model being an ARCH/GARCH model.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 50 条
  • [31] On Value-at-Risk and Conditional Value-at-Risk Measures for Intuitionistic and Picture Fuzzy Losses
    Akdemir, Hande Gunay
    Kocken, Hale Gonce
    Kara, Nurdan
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2023, 41 (06) : 583 - 617
  • [32] Semiparametric GARCH models with long memory applied to value-at-risk and expected shortfall
    Letmathe, Sebastian
    Feng, Yuanhua
    Uhde, Andre
    JOURNAL OF RISK, 2022, 25 (02): : 75 - 105
  • [33] Recursive Computation of Value-at-Risk and Conditional Value-at-Risk using MC and QMC
    Bardou, Olivier
    Frikha, Noufel
    Pages, Gilles
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 193 - 208
  • [34] A value-at-risk analysis of carry trades using skew-GARCH models
    Wang, Yu-Jen
    Chung, Huimin
    Guo, Jia-Hau
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (04): : 439 - 459
  • [35] Evaluating portfolio Value-at-Risk using semi-parametric GARCH models
    Rombouts, Jeroen V. K.
    Verbeek, Marno
    QUANTITATIVE FINANCE, 2009, 9 (06) : 737 - 745
  • [36] Dynamic hedging of conditional value-at-risk
    Melnikov, Alexander
    Smirnov, Ivan
    INSURANCE MATHEMATICS & ECONOMICS, 2012, 51 (01): : 182 - 190
  • [37] Simulating Confidence Intervals for Conditional Value-at-Risk via Least-Squares Metamodels
    Lai, Qidong
    Liu, Guangwu
    Zhang, Bingfeng
    Zhang, Kun
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [38] Risk Factor Beta Conditional Value-at-Risk
    Semenov, Andrei
    JOURNAL OF FORECASTING, 2009, 28 (06) : 549 - 558
  • [39] Conditional Value-at-Risk: Optimization approach
    Uryasev, S
    Rockafellar, RT
    STOCHASTIC OPTIMIZATION: ALGORITHMS AND APPLICATIONS, 2001, 54 : 411 - 435
  • [40] Simulation optimization of conditional value-at-risk
    Hu, Jiaqiao
    Song, Meichen
    Fu, Michael C.
    Peng, Yijie
    IISE TRANSACTIONS, 2024,