Dietary Influences on the Microbiota-Gut-Brain Axis

被引:42
|
作者
Barber, Thomas M. [1 ,2 ]
Valsamakis, Georgios [1 ,3 ,4 ]
Mastorakos, George [3 ,4 ]
Hanson, Petra [1 ,2 ]
Kyrou, Ioannis [1 ,2 ,5 ]
Randeva, Harpal S. [1 ,2 ]
Weickert, Martin O. [1 ,2 ,6 ]
机构
[1] Univ Hosp Coventry & Warwickshire NHS Trust, Warwickshire Inst Study Diabet Endocrinol & Metab, Clifford Bridge Rd, Coventry CV2 2DX, W Midlands, England
[2] Univ Warwick, Warwick Med Sch, Div Biomed Sci, Coventry CV2 2DX, W Midlands, England
[3] Aretaie Univ Hosp, Athens Med Sch, Dept Obstet & Gynaecol 2, Endocrine Unit, Athens 11528, Greece
[4] Aretaie Univ Hosp, Athens Med Sch, Pathol Dept, Endocrine Unit, Athens 11528, Greece
[5] Aston Univ, Aston Med Res Inst, Aston Med Sch, Coll Hlth & Life Sci, Birmingham B4 7ET, W Midlands, England
[6] Coventry Univ, Fac Hlth & Life Sci, Ctr Sport Exercise & Life Sci, Coventry CV1 5FB, W Midlands, England
关键词
gut microbiota; brain; diet; appetite; metabolism; CHAIN FATTY-ACIDS; PROTEIN-COUPLED RECEPTOR; AKKERMANSIA-MUCINIPHILA; CEREAL-FIBER; INTESTINAL MICROBIOTA; CIRCULATING LEVELS; METABOLIC SYNDROME; BARIATRIC SURGERY; INDUCED OBESITY; PEPTIDE YY;
D O I
10.3390/ijms22073502
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over unimaginable expanses of evolutionary time, our gut microbiota have co-evolved with us, creating a symbiotic relationship in which each is utterly dependent upon the other. Far from confined to the recesses of the alimentary tract, our gut microbiota engage in complex and bi-directional communication with their host, which have far-reaching implications for overall health, wellbeing and normal physiological functioning. Amongst such communication streams, the microbiota-gut-brain axis predominates. Numerous complex mechanisms involve direct effects of the microbiota, or indirect effects through the release and absorption of the metabolic by-products of the gut microbiota. Proposed mechanisms implicate mitochondrial function, the hypothalamus-pituitary-adrenal axis, and autonomic, neuro-humeral, entero-endocrine and immunomodulatory pathways. Furthermore, dietary composition influences the relative abundance of gut microbiota species. Recent human-based data reveal that dietary effects on the gut microbiota can occur rapidly, and that our gut microbiota reflect our diet at any given time, although much inter-individual variation pertains. Although most studies on the effects of dietary macronutrients on the gut microbiota report on associations with relative changes in the abundance of particular species of bacteria, in broad terms, our modern-day animal-based Westernized diets are relatively high in fats and proteins and impoverished in fibres. This creates a perfect storm within the gut in which dysbiosis promotes localized inflammation, enhanced gut wall permeability, increased production of lipopolysaccharides, chronic endotoxemia and a resultant low-grade systemic inflammatory milieu, a harbinger of metabolic dysfunction and many modern-day chronic illnesses. Research should further focus on the colony effects of the gut microbiota on health and wellbeing, and dysbiotic effects on pathogenic pathways. Finally, we should revise our view of the gut microbiota from that of a seething mass of microbes to one of organ-status, on which our health and wellbeing utterly depends. Future guidelines on lifestyle strategies for wellbeing should integrate advice on the optimal establishment and maintenance of a healthy gut microbiota through dietary and other means. Although we are what we eat, perhaps more importantly, we are what our gut microbiota thrive on and they thrive on what we eat.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] The microbiota-gut-brain axis in stress and depression
    Tan, Hwei-Ee
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [22] Microbiota-Gut-Brain Axis and Cognitive Function
    Gareau, Melanie G.
    MICROBIAL ENDOCRINOLOGY: THE MICROBIOTA-GUT-BRAIN AXIS IN HEALTH AND DISEASE, 2014, 817 : 357 - 371
  • [23] Nourishing the gut microbiota: The potential of prebiotics in microbiota-gut-brain axis research
    Dalile, Boushra
    Verbeke, Kristin
    Van Oudenhove, Lukas
    Vervliet, Bram
    BEHAVIORAL AND BRAIN SCIENCES, 2019, 42
  • [24] Microbiota-gut-brain axis: the mediator of exercise and brain health
    Kang, Piao
    Wang, Alan Zi-Xuan
    PSYCHORADIOLOGY, 2024, 4
  • [25] The microbiota-gut-brain axis in functional gastrointestinal disorders
    De Palma, Giada
    Collins, Stephen M.
    Bercik, Premysl
    GUT MICROBES, 2014, 5 (03) : 419 - 429
  • [26] The Mycobiome: A Neglected Component in the Microbiota-Gut-Brain Axis
    Enaud, Raphael
    Vandenborght, Louise-Eva
    Coron, Noemie
    Bazin, Thomas
    Prevel, Renaud
    Schaeverbeke, Thierry
    Berger, Patrick
    Fayon, Michael
    Lamireau, Thierry
    Delhaes, Laurence
    MICROORGANISMS, 2018, 6 (01)
  • [27] Panel 1.4: Epilepsy in the Microbiota-Gut-Brain Axis
    Yildirim, Mehmet
    ACTA PHYSIOLOGICA, 2023, 237 : 15 - 15
  • [28] Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis
    Baj, Andreina
    Moro, Elisabetta
    Bistoletti, Michela
    Orlandi, Viviana
    Crema, Francesca
    Giaroni, Cristina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (06)
  • [29] Microbiota-Gut-Brain Axis: From Neurodevelopment to Behavior
    Cryan, J.
    Dinan, T.
    BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY, 2015, 103 (05) : 362 - 362
  • [30] Kynurenine pathway metabolism and the microbiota-gut-brain axis
    Kennedy, P. J.
    Cryan, J. F.
    Dinan, T. G.
    Clarke, G.
    NEUROPHARMACOLOGY, 2017, 112 : 399 - 412