Anyon braiding in semianalytical fractional quantum Hall lattice models

被引:24
|
作者
Nielsen, Anne E. B. [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 04期
关键词
STATES; ENTANGLEMENT; STATISTICS; HIERARCHY; ENTROPY; FLUID;
D O I
10.1103/PhysRevB.91.041106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It has been demonstrated numerically, mainly by considering ground state properties, that fractional quantum Hall physics can appear in lattice systems, but it is very difficult to study the anyons directly. Here, I propose to solve this problem by using conformal field theory to build semianalytical fractional quantum Hall lattice models having anyons in their ground states, and I carry out the construction explicitly for the family of bosonic and fermionic Laughlin states. This enables me to show directly that the braiding properties of the anyons are those expected from an analytical continuation of the wave functions and to compute properties such as internal structure, size, and charge of the anyons with simple Monte Carlo simulations. The models can also be used to study how the anyons behave when they approach or even pass through the edge of the sample. Finally, I compute the effective magnetic field seen by the anyons, which varies periodically due to the presence of the lattice.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Cross-Correlation Investigation of Anyon Statistics in the ?=1/3 and 2/5 Fractional Quantum Hall States
    Glidic, P.
    Maillet, O.
    Aassime, A.
    Piquard, C.
    Cavanna, A.
    Gennser, U.
    Jin, Y.
    Anthore, A.
    Pierre, F.
    PHYSICAL REVIEW X, 2023, 13 (01)
  • [42] Anyon braiding on a fractal lattice with a local Hamiltonian (vol 105, L021302, 2022)
    Manna, Sourav
    Duncan, Callum W.
    Weidner, Carrie A.
    Sherson, Jacob F.
    Nielsen, Anne E. B.
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [43] Quantum groups and non-Abelian braiding in quantum Hall systems
    Slingerland, JK
    Bais, FA
    NUCLEAR PHYSICS B, 2001, 612 (03) : 229 - 290
  • [44] CHERN-SIMONS GAUGE-THEORIES FOR THE FRACTIONAL-QUANTUM-HALL-EFFECT HIERARCHY AND ANYON SUPERCONDUCTIVITY
    EZAWA, ZF
    IWAZAKI, A
    PHYSICAL REVIEW B, 1991, 43 (04): : 2637 - 2641
  • [45] FRACTIONAL FLUX LATTICE AND THE ANYON MEAN-FIELD APPROXIMATION
    PRYOR, C
    PHYSICAL REVIEW B, 1991, 44 (22) : 12473 - 12480
  • [46] Solvable models for neutral modes in fractional quantum Hall edges
    Heinrich, Chris
    Levin, Michael
    PHYSICAL REVIEW B, 2017, 95 (20)
  • [47] Universal Quantum Computation with Abelian Anyon Models
    Wootton, James R.
    Pachos, Jiannis K.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 270 (02) : 209 - 218
  • [48] Fractional quantum Hall junctions and two-channel Kondo models
    Sandler, NP
    Fradkin, E
    PHYSICAL REVIEW B, 2001, 63 (23)
  • [49] Local models of fractional quantum Hall states in lattices and physical implementation
    Nielsen, Anne E. B.
    Sierra, German
    Ignacio Cirac, J.
    NATURE COMMUNICATIONS, 2013, 4
  • [50] Local models of fractional quantum Hall states in lattices and physical implementation
    Anne E. B. Nielsen
    Germán Sierra
    J. Ignacio Cirac
    Nature Communications, 4