Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice

被引:3
|
作者
Fendley, Paul [1 ]
Moore, Joel E.
Xu, Cenke
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.75.051120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions. They are (i) the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins on every hexagon, (ii) the three-color and fully packed loop model on the links of the honeycomb lattice, with loops around a single hexagon forbidden, and (iii) three Ising models on interleaved triangular lattices, with domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites, finding an entropy per plaquette S/k(B)approximate to 0.3661 center dot and substantial evidence that the model is not critical. We also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological degeneracy, in an associated two-dimensional quantum model.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    Cruz-Filho, J. S.
    Amorim, R. G. G.
    Khanna, F. C.
    Santana, A. E.
    Santos, A. F.
    Ulhoa, S. C.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3203 - 3224
  • [32] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    J. S. Cruz-Filho
    R. G. G. Amorim
    F. C. Khanna
    A. E. Santana
    A. F. Santos
    S. C. Ulhoa
    International Journal of Theoretical Physics, 2019, 58 : 3203 - 3224
  • [33] THE NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    周光召
    朱重远
    戴元本
    吴詠时
    Science China Mathematics, 1980, (01) : 40 - 60
  • [34] ABELIANIZATION OF NON-ABELIAN LATTICE GAUGE-THEORIES
    GNANAPRAGASAM, B
    SHARATCHANDRA, HS
    PHYSICAL REVIEW D, 1992, 45 (04) : R1010 - R1012
  • [35] COMPOSITE HADRONS IN NON-ABELIAN LATTICE GAUGE THEORIES
    DOSCH, HG
    MULLER, VF
    NUCLEAR PHYSICS B, 1976, 116 (02) : 470 - 490
  • [36] NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    ZHOU, GH
    CHOU, KC
    ZHU, ZU
    CHU, CY
    DAI, YB
    WU, YS
    SCIENTIA SINICA, 1980, 23 (01): : 40 - 60
  • [37] Homotopy and duality in non-Abelian lattice gauge theory
    Attal, R
    NUCLEAR PHYSICS B, 2004, 684 (03) : 369 - 383
  • [38] MULTIPLE VACUA FOR NON-ABELIAN LATTICE GAUGE THEORIES
    BANDER, M
    NUCLEAR PHYSICS B, 1979, 149 (02) : 211 - 219
  • [39] Weyl fermions on the lattice and the non-abelian gauge anomaly
    Lüscher, M
    NUCLEAR PHYSICS B, 2000, 568 (1-2) : 162 - 179
  • [40] Symmetry enforced non-Abelian topological order at the surface of a topological insulator
    Chen, Xie
    Fidkowski, Lukasz
    Vishwanath, Ashvin
    PHYSICAL REVIEW B, 2014, 89 (16)