Three-dimensional lattice of ion traps

被引:4
|
作者
Ravi, K. [1 ]
Lee, Seunghyun [1 ]
Sharma, Arijit [1 ]
Ray, Tridib [1 ]
Werth, G. [2 ]
Rangwala, S. A. [1 ]
机构
[1] Raman Res Inst, Bangalore 560080, Karnataka, India
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 03期
关键词
STATES;
D O I
10.1103/PhysRevA.81.031401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an ion trap configuration that, by symmetry, is three-dimensionally frequency degenerate. This fundamental trap configuration can be stacked together in a three-dimensional simple cubic arrangement. The isolated trap, as well as the extended array of ion traps, is characterized for different locations in the lattice, illustrating the robustness of the lattice of traps concept. The ease of addressing the ions at each lattice site, individually or simultaneously, makes this system naturally suitable for a number of experiments. Application of this trap to precision spectroscopy, quantum information processing, and the study of few-particle interacting systems are discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Three-dimensional topological phase on the diamond lattice
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2009, 79 (07):
  • [22] Lattice points in three-dimensional convex bodies
    Krätzel, E
    MATHEMATISCHE NACHRICHTEN, 2000, 212 : 77 - 90
  • [23] Exact enumeration of three-dimensional lattice proteins
    Schiemann, R
    Bachmann, M
    Janke, W
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 166 (01) : 8 - 16
  • [24] Lattice kinetic simulations in three-dimensional magnetohydrodynamics
    Breyiannis, G.
    Valougeorgis, D.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2): : 065702 - 1
  • [25] Three-dimensional lattice Boltzmann model for electrodynamics
    Mendoza, M.
    Munoz, J. D.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [26] The radon number of the three-dimensional integer lattice
    Bezdek, K
    Blokhuis, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 181 - 184
  • [27] The lattice discrepancy of certain three-dimensional bodies
    Kraetzel, Ekkehard
    Nowak, Werner Georg
    MONATSHEFTE FUR MATHEMATIK, 2011, 163 (02): : 149 - 174
  • [28] Transport properties of the three-dimensional Penrose lattice
    Arai, Y.
    Ishii, Y.
    Journal of Alloys and Compounds, 2002, 342 (1-2): : 374 - 376
  • [29] The lattice discrepancy of certain three-dimensional bodies
    Ekkehard Krätzel
    Werner Georg Nowak
    Monatshefte für Mathematik, 2011, 163 : 149 - 174
  • [30] Transport properties of the three-dimensional Penrose lattice
    Arai, Y
    Ishii, Y
    JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 342 (1-2) : 374 - 376