A Study on Shilling Attack Identification in SAN using Collaborative Filtering Method based Recommender Systems

被引:0
|
作者
Praveena, N. [1 ]
Vivekanandan, K. [1 ]
机构
[1] Pondicherry Engn Coll, Dept Comp Sci & Engn, Pondicherry, India
关键词
collaborative filtering; profile injection attack detection; machine learning; deep learning; SAN; NETWORK;
D O I
10.1109/ICCCI50826.2021.9402676
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In Social Aware Network (SAN) model, the elementary actions focus on investigating the attributes and behaviors of the customer. This analysis of customer attributes facilitate in the design of highly active and improved protocols. In specific, the recommender systems are highly vulnerable to the shilling attack. The recommender system provides the solution to solve the issues like information overload. Collaborative filtering based recommender systems are susceptible to shilling attack known as profile injection attacks. In the shilling attack, the malicious users bias the output of the system's recommendations by adding the fake profiles. The attacker exploits the customer reviews, customer ratings and fake data for the processing of recommendation level. It is essential to detect the shilling attack in the network for sustaining the reliability and fairness of the recommender systems. This article reviews the most prominent issues and challenges of shilling attack. This paper presents the literature survey which is contributed in focusing of shilling attack and also describes the merits and demerits with its evaluation metrics like attack detection accuracy, precision and recall along with different datasets used for identifying the shilling attack in SAN network.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Shilling attack based on item popularity and rated item correlation against collaborative filtering
    Keke Chen
    Patrick P. K. Chan
    Fei Zhang
    Qiaoqiao Li
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 1833 - 1845
  • [32] SVM-TIA a shilling attack detection method based on SVM and target item analysis in recommender systems
    Zhou, Wei
    Wen, Junhao
    Xiong, Qingyu
    Gao, Min
    Zeng, Jun
    NEUROCOMPUTING, 2016, 210 : 197 - 205
  • [33] Improving the Shilling Attack Detection in Recommender Systems Using an SVM Gaussian Mixture Model
    Alostad, Jasem M.
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2019, 18 (01)
  • [34] A Framework for Recommender Systems Using Improved Collaborative Filtering
    Hassan, Morad Ali
    Johar, Md Gapar Md
    Hajamydeen, Asif Iqbal
    2019 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2019, : 168 - 173
  • [35] A survey of collaborative filtering based social recommender systems
    Yang, Xiwang
    Guo, Yang
    Liu, Yong
    Steck, Harald
    COMPUTER COMMUNICATIONS, 2014, 41 : 1 - 10
  • [36] Recommender systems based on collaborative filtering and resource allocation
    Javari A.
    Gharibshah J.
    Jalili M.
    Social Network Analysis and Mining, 2014, 4 (01) : 1 - 11
  • [37] Incorporating recklessness to collaborative filtering based recommender systems
    Perez-Lopez, Diego
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    Duenas-Lerin, Jorge
    INFORMATION SCIENCES, 2024, 679
  • [38] Re-scale AdaBoost for attack detection in collaborative filtering recommender systems
    Yang, Zhihai
    Xu, Lin
    Cai, Zhongmin
    Xu, Zongben
    KNOWLEDGE-BASED SYSTEMS, 2016, 100 : 74 - 88
  • [39] A shilling attack detector based on convolutional neural network for collaborative recommender system in social aware network
    Rodrigues, Joel J.P.C. (joeljr@ieee.org), 1600, Oxford University Press (61):
  • [40] A fusion collaborative filtering method for sparse data in recommender systems
    Feng, Chenjiao
    Liang, Jiye
    Song, Peng
    Wang, Zhiqiang
    INFORMATION SCIENCES, 2020, 521 : 365 - 379